Understanding the Law of Sines Concepts

Sep 29, 2024

Law of Sines Lecture Notes

Introduction to the Law of Sines

  • In a triangle, the angles are represented by capital letters (A, B, C) and the sides opposite those angles by lowercase letters (a, b, c).
  • The Law of Sines formula is:
    [ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} ]
  • This equation can be used to find missing angles or sides in a triangle.
  • The sum of the angles in a triangle equals 180 degrees.

Example 1

  • Given:
    • Angle A = 60 degrees
    • Angle B = 70 degrees
    • Side a = 8

Steps to Solve

  1. Find Angle C:
    • [ C = 180 - A - B = 180 - 60 - 70 = 50] degrees.
  2. Use Law of Sines to find side b:
    • [ \frac{b}{\sin B} = \frac{a}{\sin A} ]
    • Plugging in values:
      [ \frac{b}{\sin 70} = \frac{8}{\sin 60} ]
    • Cross-multiply and solve for b:
      [ b = \frac{8 \cdot \sin 70}{\sin 60} \approx 8.68 ]
  3. Use Law of Sines to find side c:
    • [ \frac{a}{\sin A} = \frac{c}{\sin C} ]
    • Plugging in values:
      [ \frac{8}{\sin 60} = \frac{c}{\sin 50} ]
    • Cross-multiply and solve for c:
      [ c = \frac{8 \cdot \sin 50}{\sin 60} \approx 7.07 ]

Example 2 (SSA Triangle)

  • Given:
    • Angle A = 42 degrees
    • Side a = 10
    • Side b = 9

Steps to Solve

  1. Find Angle B:
    • [ \frac{a}{\sin A} = \frac{b}{\sin B} ]
    • Plugging in values:
      [ \frac{10}{\sin 42} = \frac{9}{\sin B} ]
    • Cross-multiply and solve for ( \sin B ):
      [ 9 \cdot \sin 42 \approx 10 \cdot \sin B ]
    • Find angle B:
    • [ B \approx 37.03 \text{ degrees} ]
    • Check for second solution:
    • Second possible angle: [ 180 - 37.03 = 143 \text{ degrees} ]
    • Check if valid: [ 42 + 143 > 180 ] (not valid)
    • Therefore, angle B = 37 degrees.
  2. Find Angle C:
    • [ C = 180 - A - B = 180 - 42 - 37 = 101 \text{ degrees} ]
  3. Find Side c:
    • [ \frac{a}{\sin A} = \frac{c}{\sin C} ]
    • Plugging in values:
      [ \frac{10}{\sin 42} = \frac{c}{\sin 101} ]
    • Solve for c:
      [ c \approx 14.67 ]

Example 3 (No Solution)

  • Given:
    • Angle A = 75 degrees
    • Side a = 8
    • Side c = 9

Steps to Solve

  1. Check for potential angle c:
    • [ \frac{c}{\sin C} = \frac{a}{\sin A} ]
    • If computed ( \sin C ) exceeds 1, triangle has no solution.
    • In this case, ( \sin C ) is out of range, thus the triangle cannot be formed.

Example 4 (Another SSA Triangle)

  • Given:
    • Angle A = 30 degrees
    • Side a = 7
    • Side b = 8

Steps to Solve

  1. Find Angle B:
    • [ \frac{a}{\sin A} = \frac{b}{\sin B} ]
    • Solve for angle B:
      [ B \approx 34.85 \text{ degrees} ]
    • Find second solution:
      [ 180 - 34.85 \approx 145.15 \text{ degrees} ]
    • Check for valid triangle:
    • First triangle valid; second triangle calculated as well.
  2. Find Angle C and Side c for both triangles:
    • First triangle: ( C \approx 115.15 ), side c ( c \approx 12.7 ).
    • Second triangle: ( C \approx 4.85 ), side c ( c \approx 1.2 ).

Summary

  • When using inverse sine, always check for multiple solutions, and verify the validity of angles based on their summation to 180 degrees.
  • If summation exceeds 180 degrees, discard the second solution.