Coconote
AI notes
AI voice & video notes
Try for free
√
Mastering Surd Addition and Subtraction
May 30, 2025
Simplifying Surds by Adding or Subtracting
Introduction
Objective
: Learn how to simplify surds by adding or subtracting.
Square Numbers
: Key to simplifying surds. List square numbers up to (12^2).
Examples: (1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144).
Simplifying Surds
Goal
: Achieve square numbers under the square root sign, allowing simplification.
Example
: (\sqrt{4} = 2), (\sqrt{9} = 3).
Example Problems
Example 1: (\sqrt{48})
Break Down into Factors
:
(48 = 4 \times 12)
Further simplify: (12 = 4 \times 3)
Separate Square Roots
:
(\sqrt{4 \times 4 \times 3} = \sqrt{4} \times \sqrt{4} \times \sqrt{3})
Solve
:
(\sqrt{4} = 2)
Final result: (2 \times 2 \times \sqrt{3} = 4\sqrt{3})
Example 2: (\sqrt{20} - \sqrt{5})
Break Down into Factors
:
(20 = 4 \times 5)
Separate Square Roots
:
(\sqrt{4} \times \sqrt{5} - \sqrt{5})
Solve
:
(\sqrt{4} = 2)
Combine like terms: (2\sqrt{5} - 1\sqrt{5} = \sqrt{5})
Example 3: (2\sqrt{125} - 3\sqrt{45})
Break Down into Factors
:
(125 = 5 \times 25)
(45 = 9 \times 5)
Separate Square Roots
:
(2\sqrt{5 \times 25} - 3\sqrt{9 \times 5})
Solve
:
(\sqrt{25} = 5) and (\sqrt{9} = 3)
Result: (10\sqrt{5} - 9\sqrt{5})
Combine like terms: (\sqrt{5})
Example 4: (\sqrt{36} + \sqrt{108} - \sqrt{25})
Break Down into Factors
:
(108 = 9 \times 12)
(12 = 4 \times 3)
Simplify
:
(\sqrt{36} = 6), (\sqrt{25} = 5)
Separate: (\sqrt{9 \times 12} = 3 \times \sqrt{4 \times 3})
Solve
:
Result: (11 - 3\sqrt{3})
Example 5: (3\sqrt{49} + 2\sqrt{288} - \sqrt{72})
Break Down into Factors
:
(288 = 144 \times 2)
(72 = 9 \times 8)
(8 = 4 \times 2)
Simplify
:
(\sqrt{49} = 7), (\sqrt{144} = 12), (\sqrt{9} = 3)
Solve
:
Result: (21 + 24\sqrt{2} - 12)
Combine like terms: (18\sqrt{2})
Tips for Simplification
Always aim to express numbers as products of square numbers where possible.
Look out for common factors and simplifications.
Collect like surds to simplify further.
📄
Full transcript