📊

Understanding Complex Exponential Fourier Series

Apr 16, 2025

Complex Exponential Fourier Series

Introduction

  • Transition from trigonometric Fourier series to complex exponential Fourier series.
  • Importance of complex exponential Fourier series.
  • More questions on this type will be discussed.

Fourier Series Expansion

  • Periodic Signal (X(t)): Focus on periodic signals for complex exponential Fourier series.
  • Summation Formula:
    • Summation from n = -∞ to ∞ of C_n * e^(jnω₀*t).
    • C_n is the complex exponential Fourier coefficient.

Fourier Coefficient (C_n)

  • C_n Formula:
    • C_n = (1/Tâ‚€) * ∫ (X(t) * e^(-jnω₀*t)) dt over Tâ‚€.
  • First Step: Calculate the Fourier coefficient C_n.
  • Substitution: Use C_n to find the Fourier series expansion for X(t).*

Conversion Between Series

  • Convert complex exponential Fourier series to trigonometric Fourier series and vice versa.
  • Relationship between coefficients A_n, B_n (trigonometric) and C_n (complex exponential).

Properties of C_n

  • Reversal Operation:
    • Replace n with -n: C_-n = (1/Tâ‚€) * ∫ (X(t) * e^(jnω₀*t)) dt.
  • Conjugate Operation:
    • Reverse imaginary part's sign: C_-n* = (1/Tâ‚€) * ∫ (conjugate(X(t)) * e^(-jnω₀*t)) dt.
  • Conjugate Symmetry:
    • C_n = C_-n* implies X(t) = X(t), meaning X(t) is real._

Magnitude and Angle of C_n

  • C_n expressed as:
    • |C_n| * e^(j*∠C_n).
  • Reversal:
    • C_-n = |C_-n| * e^(j∠C_-n).
  • Conjugate Symmetry in Magnitude and Angle:
    • |C_n| = |C_-n| (even nature).
    • ∠C_n = -∠C_-n (odd nature).*_

Conclusion

  • Real signal X(t):
    • C_n is conjugate symmetric.
    • Magnitude of C_n is even.
    • Angle (phase) of C_n is odd.

Example

  • Given X(t) is periodic with C_n = n² * e^(j*n³).
    • Magnitude (n²) is even.
    • Angle (n³) is odd.
    • C_n is conjugate symmetric, implying X(t) is real.

Next Steps

  • Solve more questions on exponential Fourier series in future presentations.
  • Questions or doubts can be discussed in the comments section.

[Applause] [Music]