Coconote
AI notes
AI voice & video notes
Try for free
🌳
Decomposition Tree in Power BI
Jul 3, 2024
Decomposition Tree in Power BI
Introduction
Decomposition Tree visual in Power BI allows visualization of data across multiple dimensions.
It aggregates data automatically and enables drilling down into dimensions in any order.
Primarily used for conducting root cause analysis.
Identified as an AI visualization.
Implementing Decomposition Tree
Load Data
Use a dataset (e.g., order sheet) for decomposition.
Select Decomposition Tree Visual
Choose the decomposition tree visual in Power BI.
Add Columns for Analysis
In the 'Analyze' field, add the column 'Profit'.
In the 'Explain By' field, select columns: Category, Subcategory, Sales, and Region.
Analyzing Data
Start with selecting profit; it will display the sum of profit.
Click the plus sign for more options, including high value, low value, category, subcategory, etc.
Example Path: Profit → Category → Region → Sales
AI Splits in Decomposition Tree
If 'Enable AI Split' is activated:
High value and low value options appear.
If disabled:
These AI split options will not be visible.
Path Example: High value category, followed by high value subcategory.
Analysis Types
Absolute
: Independent value (e.g., profit based on category, subcategory, and region).
Relative
: Dependent value based on fields.
Formatting Decomposition Tree Visual
Tree Density
Settings: default, dense, or sparse.
Connector Shape
Change the visual shape of connectors.
Bar Settings
Options for top node, parent node, and level node.
Change colors for positive and negative bars.
Category Label
Modify font, font color, size, text properties (bold, underlined).
Values
Adjust font, color, display unit, etc.
Header & Title
Change title font, add/subtract subtitle.
Summary
Comprehensive explanation of the decomposition tree in Power BI.
Steps to implement, configure, and analyze data using this visual tool.
Formatting options for better visual representation.
📄
Full transcript