📊

Understanding Riemann Sums and Integrals

May 9, 2025

Riemann Sums Study Guide

1. Basic Idea

  • Riemann Sum: Approximates an integral by summing the areas of vertical rectangles.
  • Formula: [ \int_a^b f(x) , dx \approx f(x_1)\Delta x + f(x_2)\Delta x + \ldots + f(x_n)\Delta x ]
  • ( \Delta x = \frac{b-a}{n} ): Width of each rectangle
  • Common Rules for choosing x-values:
    1. Right endpoint
    2. Left endpoint
    3. Midpoint
  • Example: Interval ([1, 3]) with ( n = 4 )
    • ( \Delta x = \frac{3-1}{4} = 0.5 )
    • Right endpoint: ( f(1.5)0.5 + f(2)0.5 + f(2.5)0.5 + f(3)0.5 )
    • Left endpoint: ( f(1)0.5 + f(1.5)0.5 + f(2)0.5 + f(2.5)0.5 )
    • Midpoint: ( f(1.25)0.5 + f(1.75)0.5 + f(2.25)0.5 + f(2.75)0.5 )
  • Estimations:
    • If ( f(x) ) is increasing, left endpoint underestimates and right endpoint overestimates.
    • If ( f(x) ) is decreasing, left endpoint overestimates and right endpoint underestimates.

2. Summations

  • Summation Notation: Describes large sums by a formula for each term.
    • Example: ( \sum_{k=1}^{10} k^2 = 1^2 + 2^2 + 3^2 + \ldots + 10^2 )
  • Riemann Sum Summations:
    • Right endpoint: ( \int_a^b f(x) , dx \approx \sum_{k=1}^{n} f(a + \frac{b-a}{n} k) \frac{b-a}{n} )
    • Left endpoint: ( \int_a^b f(x) , dx \approx \sum_{k=1}^{n} f(a + \frac{b-a}{n} (k-1)) \frac{b-a}{n} )
    • Midpoint: ( \int_a^b f(x) , dx \approx \sum_{k=1}^{n} f(a + \frac{b-a}{n} (k - 0.5)) \frac{b-a}{n} )
  • Limit Definition of Integral: As rectangles increase to infinity.
    • ( \int_a^b f(x) , dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(a + \frac{b-a}{n} k) \frac{b-a}{n} )

3. Exercises

  1. Estimate ( \int_0^{10} f(x) , dx ) with five rectangles and left endpoints.
  2. Racecar speed graph:
    • Estimate distance with five rectangles and right endpoints.
    • Determine if overestimate/underestimate.
  3. Approximate ( \int_0^2 x^2 , dx ) with four rectangles, right endpoints.
  4. Approximate ( \int_0^{\pi} \sin 2x , dx ) with three rectangles, midpoints.
  5. Approximate ( \int_1^5 x , dx ) with 100 rectangles, right endpoints. Calculate first and last rectangle areas and determine estimate bias.
  6. Function table:
    • Estimate ( \int_0^{0.5} f(x) , dx ) with right endpoints.
    • Determine estimate bias.
  7. Write integrals from given Riemann sums.
  8. Evaluate summation expressions.
  9. Write summations for given expressions.
  10. Use limit definition to express integrals as limits.

Answers

  • Solutions to exercises are provided for self-verification.