📐

Understanding Polar Coordinates Basics

May 7, 2025

Introduction to Polar Coordinates

Overview

  • Rectangular Coordinates: Uses X and Y.
  • Polar Coordinates: Uses R (radius) and Theta (angle).

Plotting Polar Coordinates

  1. Example: Plot (3, 45°)
    • R = 3, Theta = 45°
    • Draw circles with radii 1 to 3.
    • Ray at 45° reaches third circle.
  2. Example: Plot (2, 3π/4)
    • Convert to degrees: 3π/4 * (180/π) = 135°.
    • Plot in Quadrant 2 with radius 2.*

Handling Negative R

  • Example: (-2, 60°)
    • Plot (2, 60°) first in Quadrant 1.
    • Negative R inverts direction by 180°.

Finding Equivalent Points

  • Find alternate polar coordinates that lead to the same point.
  • General rule:
    • Given (R, Theta), find:
      1. (R, Theta - 360° or 2π)
      2. (-R, Theta + 180° or π)
      3. (-R, Theta - 360° + 180°)
      4. (R + 360°, Theta + 180°)
  • Example: (2, 30°)
    • Alternate points: (2, -330°), (-2, 210°), (-2, -150°)

Conversion Between Coordinate Systems

Polar to Rectangular

  • Equations:
    • X = R * cos(Theta)
    • Y = R * sin(Theta)
  • Example: (4, 60°)
    • X = 4 * cos(60°) = 2
    • Y = 4 * sin(60°) = 2√3

Rectangular to Polar

  • Equations:
    • R = sqrt(X² + Y²)
    • Theta = arctan(Y/X)
  • Example: (2, -4)
    • R = sqrt(2² + (-4)²) = 2√5
    • Theta in Quadrant 4: 296.56°
  • Example: (-5, 5√3)
    • R = 10
    • Theta = 120° or 2π/3 radians

Key Insights

  • Positive angles measured counterclockwise from the positive x-axis.
  • Negative R values indicate reflection across the origin.
  • Conversion between coordinates requires understanding of both trigonometric functions and angle quadrant positioning.
  • Often, a single polar coordinate can be expressed in multiple equivalent forms by adding or subtracting full rotations (360° or 2π).