Coconote
AI notes
AI voice & video notes
Try for free
📐
Understanding Polar Coordinates and Conversions
May 7, 2025
Introduction to Polar Coordinates
Key Topics
Understanding Polar vs Rectangular Coordinates
Plotting Polar Coordinates
Handling Negative R Values
Finding Equivalent Polar Coordinates
Converting Polar to Rectangular Coordinates
Converting Rectangular to Polar Coordinates
Polar vs Rectangular Coordinates
Rectangular Coordinates
: Use (x, y) format.
Polar Coordinates
: Use (r, θ) format, where:
r
= radius (distance from origin)
θ
= angle from positive x-axis
Plotting Polar Coordinates
Example
: Plot (3, 45°)
Plot circles with radii 1, 2, 3.
Draw ray at 45° angle to intersect the third circle.
Positive angle measured counterclockwise from x-axis.
Example
: Plot (2, 3π/4)
Convert to degrees: 3π/4 = 135°.
135° places point in second quadrant.
Stop at second circle for radius of 2.
Handling Negative R Values
Example: Plot (-2, 60°)
Plot positive (2, 60°) first.
For (-2, 60°), move 180° opposite the direction of positive angle.
Result is equivalent to (2, 240°).
Finding Equivalent Polar Coordinates
Example
: (2, 30°)
Original: (2, 30°)
Negative angle: (2, -330°)
Negative r, positive angle: (-2, 210°)
Negative r, negative angle: (-2, -150°)
Converting Polar to Rectangular Coordinates
Formulas
:
x = r * cos(θ)
y = r * sin(θ)
Example
: Convert (4, 60°)
x = 4 * cos(60°) = 2
y = 4 * sin(60°) = 2√3
Converting Rectangular to Polar Coordinates
Formulas
:
r = √(x² + y²)
θ = arctan(y/x)
Example
: Convert (2, -4)
r = √(2² + (-4)²) = √20 = 2√5
θ (reference) = arctan(4/2) = 63.43°
Actual θ for Quadrant 4 = 360 - 63.43 = 296.57°
Summary
Understanding and converting between polar and rectangular coordinates involves using trigonometric identities and recognizing quadrant positions.
Negative r values require 180° adjustments.
There are multiple equivalent representations for any polar coordinate, based on angle and r sign adjustments.
📄
Full transcript