Understanding Polar Coordinates and Conversions

May 7, 2025

Introduction to Polar Coordinates

Key Topics

  • Understanding Polar vs Rectangular Coordinates
  • Plotting Polar Coordinates
  • Handling Negative R Values
  • Finding Equivalent Polar Coordinates
  • Converting Polar to Rectangular Coordinates
  • Converting Rectangular to Polar Coordinates

Polar vs Rectangular Coordinates

  • Rectangular Coordinates: Use (x, y) format.
  • Polar Coordinates: Use (r, θ) format, where:
    • r = radius (distance from origin)
    • θ = angle from positive x-axis

Plotting Polar Coordinates

  1. Example: Plot (3, 45°)

    • Plot circles with radii 1, 2, 3.
    • Draw ray at 45° angle to intersect the third circle.
    • Positive angle measured counterclockwise from x-axis.
  2. Example: Plot (2, 3π/4)

    • Convert to degrees: 3π/4 = 135°.
    • 135° places point in second quadrant.
    • Stop at second circle for radius of 2.

Handling Negative R Values

  • Example: Plot (-2, 60°)
    • Plot positive (2, 60°) first.
    • For (-2, 60°), move 180° opposite the direction of positive angle.
    • Result is equivalent to (2, 240°).

Finding Equivalent Polar Coordinates

  • Example: (2, 30°)
    • Original: (2, 30°)
    • Negative angle: (2, -330°)
    • Negative r, positive angle: (-2, 210°)
    • Negative r, negative angle: (-2, -150°)

Converting Polar to Rectangular Coordinates

  • Formulas:
    • x = r * cos(θ)
    • y = r * sin(θ)
  • Example: Convert (4, 60°)
    • x = 4 * cos(60°) = 2
    • y = 4 * sin(60°) = 2√3

Converting Rectangular to Polar Coordinates

  1. Formulas:
    • r = √(x² + y²)
    • θ = arctan(y/x)
  2. Example: Convert (2, -4)
    • r = √(2² + (-4)²) = √20 = 2√5
    • θ (reference) = arctan(4/2) = 63.43°
    • Actual θ for Quadrant 4 = 360 - 63.43 = 296.57°

Summary

  • Understanding and converting between polar and rectangular coordinates involves using trigonometric identities and recognizing quadrant positions.
  • Negative r values require 180° adjustments.
  • There are multiple equivalent representations for any polar coordinate, based on angle and r sign adjustments.