Key Concepts in Series Analysis
These notes summarize the various tests used to determine whether an infinite series converges or diverges.
1. Divergence Test
- Objective: Determine if a series diverges.
- Method: Calculate the limit of a sequence ( a_n ) as ( n \to \infty ).
- If ( \lim_{n \to \infty} a_n \neq 0 ), the series diverges.
- If ( \lim_{n \to \infty} a_n = 0 ), the series may converge; use another test.
2. Geometric Series Test
- Form: ( ar^n ) or ( ar^{n-1} ).
- Convergence Criteria:
- If ( |r| < 1 ), the series converges.
- If ( |r| \geq 1 ), the series diverges.
3. P-Series Test
- Form: ( \sum \frac{1}{n^p} ).
- Convergence:
- If ( p > 1 ), the series converges.
- If ( p \leq 1 ), the series diverges.
4. Telescoping Series
- Convergence: Involves canceling terms to find a partial sum.
- Method:
- Write the general formula for partial sums and evaluate the limit.
- If it converges to a finite value, the series converges.
5. Integral Test
- Conditions: Function ( f(n) ) is positive, continuous, and decreasing.
- Convergence:
- Evaluate ( \int_1^\infty f(x) , dx ).
- Finite value indicates convergence; infinity or doesn’t exist indicates divergence.
6. Ratio Test
- Method: Calculate ( \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| ).
- If the result is < 1, the series converges.
- If > 1 or infinity, it diverges.
- If = 1, the test is inconclusive.
7. Root Test
- Method: ( \lim_{n \to \infty} \sqrt[n]{|a_n|} ).
- If < 1, converges.
- If > 1 or infinity, diverges.
- If = 1, inconclusive._
8. Direct Comparison Test
- Compare two series ( a_n ) (smaller) and ( b_n ) (larger).
- Convergence:
- ( b_n ) converges implies ( a_n ) converges.
- ( a_n ) diverges implies ( b_n ) diverges.
9. Limit Comparison Test
- Method: Compare series using ( \lim_{n \to \infty} \frac{a_n}{b_n} = L ).
- If ( L > 0 ), both series converge or diverge together._
10. Alternating Series Test
- Form: (-1)(^{n} a_n).
- Convergence:
- Must pass the divergence test (limit of ( a_n \to 0 )).
- ( a_{n+1} < a_n ) for convergence.
- Conditional Convergence: Original converges, but absolute diverges._
11. Examples and Application of Tests
-
Divergence Test: Showed divergence for ( \frac{2n^2 + 5}{7n^2 - 4} ).
-
P-Series: ( \frac{n^{1/3}}{n^5} ) converges as ( p = \frac{14}{3} > 1.
-
Geometric Series: ( 5 \left( \frac{1}{4} \right)^{n-1} ) converges with (|r|=\frac{1}{4} < 1).
-
Alternating Series: Showed conditional convergence for ( \frac{(-1)^n}{\sqrt{n}} ).
-
Telescoping Series: Analyzed ( \frac{1}{n(n+1)} ). Converges to 1 using partial fractions.
-
Direct Comparison: ( \frac{1}{n^2+4} ) converges compared to ( \frac{1}{n^2} ).
-
Integral Test: ( \frac{1}{\sqrt{x-2}} ) diverges using improper integrals.
-
Limit Comparison: ( \frac{\sqrt{n}}{n^3+2} ) converges compared to ( \frac{\sqrt{n}}{n^3} ).
-
Root Test: Indicated convergence of ( \left(\frac{3n^2-9}{7n^2+4}\right)^n ).
-
Ratio Test: Convergent series ( \frac{2^n}{n!} ) with ( \lim \to 0 ).
These notes summarize key methods to evaluate the convergence or divergence of a series, useful for mathematical analysis and problem-solving in calculus.