📊

Methods for Analyzing Series Convergence

May 4, 2025

Key Concepts in Series Analysis

These notes summarize the various tests used to determine whether an infinite series converges or diverges.

1. Divergence Test

  • Objective: Determine if a series diverges.
  • Method: Calculate the limit of a sequence ( a_n ) as ( n \to \infty ).
    • If ( \lim_{n \to \infty} a_n \neq 0 ), the series diverges.
    • If ( \lim_{n \to \infty} a_n = 0 ), the series may converge; use another test.

2. Geometric Series Test

  • Form: ( ar^n ) or ( ar^{n-1} ).
  • Convergence Criteria:
    • If ( |r| < 1 ), the series converges.
    • If ( |r| \geq 1 ), the series diverges.

3. P-Series Test

  • Form: ( \sum \frac{1}{n^p} ).
  • Convergence:
    • If ( p > 1 ), the series converges.
    • If ( p \leq 1 ), the series diverges.

4. Telescoping Series

  • Convergence: Involves canceling terms to find a partial sum.
  • Method:
    • Write the general formula for partial sums and evaluate the limit.
    • If it converges to a finite value, the series converges.

5. Integral Test

  • Conditions: Function ( f(n) ) is positive, continuous, and decreasing.
  • Convergence:
    • Evaluate ( \int_1^\infty f(x) , dx ).
    • Finite value indicates convergence; infinity or doesn’t exist indicates divergence.

6. Ratio Test

  • Method: Calculate ( \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| ).
    • If the result is < 1, the series converges.
    • If > 1 or infinity, it diverges.
    • If = 1, the test is inconclusive.

7. Root Test

  • Method: ( \lim_{n \to \infty} \sqrt[n]{|a_n|} ).
    • If < 1, converges.
    • If > 1 or infinity, diverges.
    • If = 1, inconclusive._

8. Direct Comparison Test

  • Compare two series ( a_n ) (smaller) and ( b_n ) (larger).
  • Convergence:
    • ( b_n ) converges implies ( a_n ) converges.
    • ( a_n ) diverges implies ( b_n ) diverges.

9. Limit Comparison Test

  • Method: Compare series using ( \lim_{n \to \infty} \frac{a_n}{b_n} = L ).
    • If ( L > 0 ), both series converge or diverge together._

10. Alternating Series Test

  • Form: (-1)(^{n} a_n).
  • Convergence:
    • Must pass the divergence test (limit of ( a_n \to 0 )).
    • ( a_{n+1} < a_n ) for convergence.
    • Conditional Convergence: Original converges, but absolute diverges._

11. Examples and Application of Tests

  • Divergence Test: Showed divergence for ( \frac{2n^2 + 5}{7n^2 - 4} ).

  • P-Series: ( \frac{n^{1/3}}{n^5} ) converges as ( p = \frac{14}{3} > 1.

  • Geometric Series: ( 5 \left( \frac{1}{4} \right)^{n-1} ) converges with (|r|=\frac{1}{4} < 1).

  • Alternating Series: Showed conditional convergence for ( \frac{(-1)^n}{\sqrt{n}} ).

  • Telescoping Series: Analyzed ( \frac{1}{n(n+1)} ). Converges to 1 using partial fractions.

  • Direct Comparison: ( \frac{1}{n^2+4} ) converges compared to ( \frac{1}{n^2} ).

  • Integral Test: ( \frac{1}{\sqrt{x-2}} ) diverges using improper integrals.

  • Limit Comparison: ( \frac{\sqrt{n}}{n^3+2} ) converges compared to ( \frac{\sqrt{n}}{n^3} ).

  • Root Test: Indicated convergence of ( \left(\frac{3n^2-9}{7n^2+4}\right)^n ).

  • Ratio Test: Convergent series ( \frac{2^n}{n!} ) with ( \lim \to 0 ).

These notes summarize key methods to evaluate the convergence or divergence of a series, useful for mathematical analysis and problem-solving in calculus.