Coconote
AI notes
AI voice & video notes
Try for free
π
Understanding Derivatives through Limit Process
Dec 3, 2024
π
View transcript
π€
Take quiz
Lecture Notes: Finding Derivatives Using the Definition of the Derivative
Introduction to Derivatives
Definition of Derivative Formula
:
( f'(x) = \lim_{{h \to 0}} \frac{{f(x+h) - f(x)}}{h} )
Purpose: To find the derivative of a function using the limit process.
Example 1: Linear Function
Function
: ( f(x) = 5x - 4 )
First Derivative
:
Substitute ( f(x+h) = 5(x+h) - 4 ) into the derivative formula.
Simplify: ( \lim_{{h \to 0}} \frac{5x + 5h - 4 - (5x - 4)}{h} )
Simplification leads to: ( \frac{5h}{h} = 5 )
Result
: ( f'(x) = 5 )
Example 2: Quadratic Function
Function
: ( f(x) = x^2 )
First Derivative
:
Substitute ( f(x+h) = (x+h)^2 ) into the derivative formula.
Simplify: ( \lim_{{h \to 0}} \frac{x^2 + 2xh + h^2 - x^2}{h} )
Combine like terms: ( \lim_{{h \to 0}} \frac{2xh + h^2}{h} )
Cancel ( h ) terms: ( \lim_{{h \to 0}} (2x + h) )
Substitute: ( 2x )
Result
: ( f'(x) = 2x )
Example 3: Rational Function
Function
: ( f(x) = \frac{1}{x} )
First Derivative
:
Substitute ( f(x+h) = \frac{1}{x+h} ) into the derivative formula.
Simplify using common denominator: ( \lim_{{h \to 0}} \frac{x - (x+h)}{h(x)(x+h)} )
Cancel ( h ) terms: ( \lim_{{h \to 0}} \frac{-1}{x(x+h)} )
Substitute: ( \frac{-1}{x^2} )
Result
: ( f'(x) = \frac{-1}{x^2} )
Example 4: Square Root Function
Function
: ( f(x) = \sqrt{x} )
First Derivative
:
Substitute ( f(x+h) = \sqrt{x+h} ) into the derivative formula.
Multiply by conjugate: ( \lim_{{h \to 0}} \frac{x - (x+h)}{h(\sqrt{x} + \sqrt{x+h})} )
Cancel ( h ) terms: ( \lim_{{h \to 0}} \frac{1}{\sqrt{x} + \sqrt{x+h}} )
Substitute: ( \frac{1}{2\sqrt{x}} )
Result
: ( f'(x) = \frac{1}{2\sqrt{x}} )
Example 5: Complex Fraction with Square Root
Function
: ( f(x) = \frac{8}{\sqrt{x}} )
First Derivative
:
Substitute ( f(x+h) = \frac{8}{\sqrt{x+h}} ) into the derivative formula.
Simplify using conjugate and combine fractions.
Cancel ( h ) terms and simplify.
Substitute to find derivative.
Result
: ( f'(x) = \frac{-4}{x\sqrt{x}} )
Example 6: Polynomial Function
Function
: ( f(x) = x^2 - 5x + 9 )
First Derivative
:
Substitute ( f(x+h) = (x+h)^2 - 5(x+h) + 9 ) into the derivative formula.
Simplify: ( \lim_{{h \to 0}} \frac{h^2 + 2xh - 5h}{h} )
Cancel ( h ) terms and simplify.
Substitute: ( 2x - 5 )
Result
: ( f'(x) = 2x - 5 )
Conclusion
Understanding how to find derivatives using the limit process is fundamental for calculus.
Practice using the definition and simplifying expressions to become proficient in calculating derivatives.
π
Full transcript