Coconote
AI notes
AI voice & video notes
Try for free
📐
Understanding Function Domains in Mathematics
Sep 4, 2024
📄
View transcript
🤓
Take quiz
🃏
Review flashcards
Lecture Notes: Finding the Domain of Functions
Introduction
Focus on finding domain for specific functions.
Discussion on shifts of these functions.
Rational Functions
Reciprocal Function
Function
: ( f(x) = \frac{1}{x} )
Vertical Asymptote
: ( x = 0 )
Horizontal Asymptote
: ( y = 0 )
Domain
: All real numbers except ( x = 0 )
Interval notation: ((-\infty, 0) \cup (0, \infty))
Shifted Reciprocal Function
Function
: ( f(x) = \frac{1}{x+2} )
Domain shifts as ( x + 2 \neq 0 ) implies ( x \neq -2 )
Domain
: All real numbers except ( x = -2 )
Interval notation: ((-\infty, -2) \cup (-2, \infty))
Root Functions
Square roots of non-negative numbers are positive.
Function
: ( f(x) = \sqrt{x} )
Domain
: ([0, \infty))
Shifted Root Function
Function
: ( f(x) = \sqrt{x-5} )
Domain
: ([5, \infty))
Logarithmic Functions
Function
: ( f(x) = \ln(x) )
Domain
: ( x > 0 )
Interval notation: ((0, \infty))
Shifted Logarithmic Function
Function
: ( f(x) = \ln(1-x) )
Domain
: ( x < 1 )
Interval notation: ((-\infty, 1))
Exponential Functions
Function
: ( f(x) = e^x )
Domain
: All real numbers, ((-\infty, \infty))
Trigonometric Functions
Sine and Cosine Functions
Domain
: All real numbers, ((-\infty, \infty))
Periodic functions with no domain restrictions.
Tangent Function
Function
: ( f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)} )
Domain
: All real numbers except odd multiples of ( \frac{\pi}{2} )
Excluded values: Odd multiples of ( \frac{\pi}{2} )
Cotangent Function
Function
: ( f(x) = \cot(x) = \frac{\cos(x)}{\sin(x)} )
Domain
: All real numbers except integer multiples of ( \pi )
Excluded values: Integer multiples of ( \pi )
Secant and Cosecant
Use reasoning similar to tangent and cotangent for finding domains as they are reciprocals of sine and cosine.
📄
Full transcript