Understanding Function Domains in Mathematics

Sep 4, 2024

Lecture Notes: Finding the Domain of Functions

Introduction

  • Focus on finding domain for specific functions.
  • Discussion on shifts of these functions.

Rational Functions

Reciprocal Function

  • Function: ( f(x) = \frac{1}{x} )
  • Vertical Asymptote: ( x = 0 )
  • Horizontal Asymptote: ( y = 0 )
  • Domain: All real numbers except ( x = 0 )
    • Interval notation: ((-\infty, 0) \cup (0, \infty))

Shifted Reciprocal Function

  • Function: ( f(x) = \frac{1}{x+2} )
  • Domain shifts as ( x + 2 \neq 0 ) implies ( x \neq -2 )
  • Domain: All real numbers except ( x = -2 )
    • Interval notation: ((-\infty, -2) \cup (-2, \infty))

Root Functions

  • Square roots of non-negative numbers are positive.
  • Function: ( f(x) = \sqrt{x} )
    • Domain: ([0, \infty))

Shifted Root Function

  • Function: ( f(x) = \sqrt{x-5} )
    • Domain: ([5, \infty))

Logarithmic Functions

  • Function: ( f(x) = \ln(x) )
  • Domain: ( x > 0 )
    • Interval notation: ((0, \infty))

Shifted Logarithmic Function

  • Function: ( f(x) = \ln(1-x) )
    • Domain: ( x < 1 )
    • Interval notation: ((-\infty, 1))

Exponential Functions

  • Function: ( f(x) = e^x )
    • Domain: All real numbers, ((-\infty, \infty))

Trigonometric Functions

Sine and Cosine Functions

  • Domain: All real numbers, ((-\infty, \infty))
  • Periodic functions with no domain restrictions.

Tangent Function

  • Function: ( f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)} )
  • Domain: All real numbers except odd multiples of ( \frac{\pi}{2} )
    • Excluded values: Odd multiples of ( \frac{\pi}{2} )

Cotangent Function

  • Function: ( f(x) = \cot(x) = \frac{\cos(x)}{\sin(x)} )
  • Domain: All real numbers except integer multiples of ( \pi )
    • Excluded values: Integer multiples of ( \pi )

Secant and Cosecant

  • Use reasoning similar to tangent and cotangent for finding domains as they are reciprocals of sine and cosine.