Coconote
AI notes
AI voice & video notes
Try for free
📐
Understanding the Law of Sines
Apr 28, 2025
Lecture Notes: The Law of Sines
Introduction
Law of Sines Formula
:
Given a triangle with angles A, B, C and opposite sides a, b, c respectively: [ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} ]
Purpose
: To find missing angles or sides in a triangle.
Basic Properties of Triangles
Sum of angles in a triangle = 180°.
Example 1: Solving a Triangle
Given
:
Angle A = 60°, Angle B = 70°, Side a = 8
Find
: Angle C, Side b, Side c
Solution Steps
Find Angle C
:
A + B + C = 180°
C = 180° - 60° - 70° = 50°
Find Side b
using Law of Sines:
( \frac{b}{\sin B} = \frac{a}{\sin A} )
Solve for b: ( b = \frac{8 \times \sin 70°}{\sin 60°} \approx 8.68 )
Find Side c
:
( \frac{c}{\sin C} = \frac{a}{\sin A} )
Solve for c: ( c = \frac{8 \times \sin 50°}{\sin 60°} \approx 7.07 )
Example 2: Side-Side-Angle (SSA) Triangle Case
Given
:
Angle A = 42°, Side a = 10, Side b = 9
Find
: Angle B, Angle C, Side c
Solution Steps
Find Angle B
:
Solve ( \sin B = \frac{9 \times \sin 42°}{10} \approx 0.602 )
B = ( \arcsin(0.602) \approx 37.03° )
Possible second solution: 180° - 37.03° = 143° (Check if valid)
A + B cannot exceed 180°, 42° + 143° > 180°, so only one solution.
Find Angle C
:
C = 180° - A - B = 180° - 42° - 37° = 101°
Find Side c
:
( c = \frac{10 \times \sin 101°}{\sin 42°} \approx 14.67 )
Example 3: No Solution Case
Given
:
Angle A = 75°, Side a = 8, Side c = 9
Issue
: Solve ( \sin C = \frac{9 \times \sin 75°}{8} > 1 )
No solution as ( \sin C ) cannot exceed 1.
Example 4: Two Solutions
Given
:
Angle A = 30°, Side a = 7, Side b = 8
Find
: Angle B, Angle C, Side c with two possible triangles.
Solution Steps
Find Angle B
:
( \sin B = \frac{8 \times \sin 30°}{7} \approx 0.571 )
B = ( \arcsin(0.571) \approx 34.85° )
Second potential angle: 180° - 34.85° = 145.15°
Check validity: A + B < 180° for both cases
Complete Triangles
:
First triangle: C = 180° - 30° - 34.85° = 115.15°
Second triangle: C = 180° - 30° - 145.15° = 4.85°
Find Side c
for each triangle:
First triangle: ( c \approx 12.7 )
Second triangle: ( c \approx 1.2 )
Key Takeaways
Always verify triangle properties (sum of angles, side-angle relationships).
SSA triangles may have one, two, or no solutions.
Cross-check with triangle inequalities to ensure plausible solutions.
📄
Full transcript