Coconote
AI notes
AI voice & video notes
Try for free
📐
Understanding Improper Integrals
May 13, 2025
📄
View transcript
🤓
Take quiz
🃏
Review flashcards
Lecture Notes: Evaluating Improper Integrals
Introduction to Improper Integrals
Definition
: An integral with infinity as a limit (either upper or lower) is called an improper integral.
Convergent
: The integral yields a finite number.
Divergent
: The integral yields infinity.
Example
: Integral from 1 to infinity of 1/x dx
Evaluating the Integral ( \int_{1}^{\infty} \frac{1}{x} dx )_
Express as a Limit
:
Replace infinity with a variable (t).
Expression: ( \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx )
Antiderivative
:
( \int \frac{1}{x} dx = \ln |x| )
Apply Fundamental Theorem of Calculus
:
( \lim_{t \to \infty} [\ln(t) - \ln(1)] )
( \ln(1) = 0 )
Evaluate: ( \lim_{t \to \infty} \ln(t) = \infty )
Conclusion:
Divergent
(yields infinity).
Example: Integral ( \int_{1}^{\infty} \frac{1}{x^2} dx )_
Express as a Limit
:
( \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2} dx )
Antiderivative
:
Rewrite: ( x^{-2} )
Apply Power Rule: Add 1 to exponent, divide by new exponent.
( \int x^{-2} dx = -\frac{1}{x} + C )
Calculate
:
( \lim_{t \to \infty} [-\frac{1}{t} - (-1)] )
Evaluate: ( \lim_{t \to \infty} -\frac{1}{t} = 0 )
Result: 1 (finite number)
Conclusion:
Convergent
P-Series Test
Rule
: ( \int_{1}^{\infty} \frac{1}{x^p} dx )
Convergent if ( p > 1 )
Divergent if ( p \leq 1 )
Examples
:
( p = 1 ) (Divergent)
( p = 2 ) (Convergent)_
Additional Example: ( \int_{1}^{\infty} \frac{1}{(3x+1)^2} dx )_
Comparison
:
Similar to ( \int \frac{1}{x^2} dx ), where ( p = 2 ), thus convergent by comparison.
Verification
:
Use substitution: Let ( u = 3x + 1 ), ( du = 3 dx )
New integral: ( \int \frac{1}{u^2} \cdot \frac{1}{3} du )
Antiderivative: ( -\frac{1}{3u} )
Compute
:
Substitute back ( u = 3x + 1 )
( \lim_{t \to \infty} \left[ -\frac{1}{3(3t+1)} + \frac{1}{12} \right] )
Evaluate: Limit approaches zero, thus final result is ( \frac{1}{12} )
Conclusion:
Convergent
_
📄
Full transcript