📐

Understanding Improper Integrals

May 13, 2025

Lecture Notes: Evaluating Improper Integrals

Introduction to Improper Integrals

  • Definition: An integral with infinity as a limit (either upper or lower) is called an improper integral.
    • Convergent: The integral yields a finite number.
    • Divergent: The integral yields infinity.
  • Example: Integral from 1 to infinity of 1/x dx

Evaluating the Integral ( \int_{1}^{\infty} \frac{1}{x} dx )_

  1. Express as a Limit:
    • Replace infinity with a variable (t).
    • Expression: ( \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx )
  2. Antiderivative:
    • ( \int \frac{1}{x} dx = \ln |x| )
  3. Apply Fundamental Theorem of Calculus:
    • ( \lim_{t \to \infty} [\ln(t) - \ln(1)] )
    • ( \ln(1) = 0 )
    • Evaluate: ( \lim_{t \to \infty} \ln(t) = \infty )
    • Conclusion: Divergent (yields infinity).

Example: Integral ( \int_{1}^{\infty} \frac{1}{x^2} dx )_

  1. Express as a Limit:
    • ( \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2} dx )
  2. Antiderivative:
    • Rewrite: ( x^{-2} )
    • Apply Power Rule: Add 1 to exponent, divide by new exponent.
    • ( \int x^{-2} dx = -\frac{1}{x} + C )
  3. Calculate:
    • ( \lim_{t \to \infty} [-\frac{1}{t} - (-1)] )
    • Evaluate: ( \lim_{t \to \infty} -\frac{1}{t} = 0 )
    • Result: 1 (finite number)
    • Conclusion: Convergent

P-Series Test

  • Rule: ( \int_{1}^{\infty} \frac{1}{x^p} dx )
    • Convergent if ( p > 1 )
    • Divergent if ( p \leq 1 )
  • Examples:
    • ( p = 1 ) (Divergent)
    • ( p = 2 ) (Convergent)_

Additional Example: ( \int_{1}^{\infty} \frac{1}{(3x+1)^2} dx )_

  1. Comparison:
    • Similar to ( \int \frac{1}{x^2} dx ), where ( p = 2 ), thus convergent by comparison.
  2. Verification:
    • Use substitution: Let ( u = 3x + 1 ), ( du = 3 dx )
    • New integral: ( \int \frac{1}{u^2} \cdot \frac{1}{3} du )
    • Antiderivative: ( -\frac{1}{3u} )
  3. Compute:
    • Substitute back ( u = 3x + 1 )
    • ( \lim_{t \to \infty} \left[ -\frac{1}{3(3t+1)} + \frac{1}{12} \right] )
    • Evaluate: Limit approaches zero, thus final result is ( \frac{1}{12} )
    • Conclusion: Convergent_