📚

Understanding Tautologies and Contradictions

Oct 21, 2024

Lecture on Tautologies, Contradictions, and Logical Equivalences

Introduction

  • Focus on tautologies, contradictions, and logical equivalences.
  • Practice through truth tables.

Tautologies

  • Definition: Comes from Greek, meaning "already said". In logic, it refers to a statement that is always true.

  • Example: Proposition p and p or not p.

    • Truth table:
      • p: True, False
      • not p: False, True
      • p or not p: True, True
    • Conclusion: Last column is all true, hence a tautology.
  • Another Example: P and (P implies Q) implies Q.

    • Explanation: Known in logic as Modus Ponens.
    • Truth table:
      • P: True, True, False, False
      • Q: True, False, True, False
      • P implies Q: True, False, True, True
      • P and (P implies Q): True, False, False, False
      • Result: True, True, True, True
    • Conclusion: Last column is all true, hence a tautology.
  • Law of the Excluded Middle: P is equivalent to not not P.

Contradictions

  • Definition: Statements that are always false.
  • Example: P and not P.
    • Truth table:
      • P: True, False
      • not P: False, True
      • P and not P: False, False
    • Conclusion: Last column is all false, hence a contradiction.

Logical Equivalences

  • Definition: Two propositions are logically equivalent if they are true at the same time.
  • Example: not (P and Q) and not P or not Q.
    • Based on De Morgan's Law.
    • Truth table:
      • P: True, True, False, False
      • Q: True, False, True, False
      • not (P and Q): False, True, True, True
      • not P or not Q: False, True, True, True
    • Conclusion: Both results are the same, hence logically equivalent.

Conclusion

  • Next session will cover the laws of propositional logic, focusing on logical equivalences.
  • These correspond to the table of Boolean algebra.