Exploring Logarithms in Complex Analysis

Aug 22, 2024

Lecture Notes: Logarithm and Integrals in Complex Analysis

Introduction

  • Welcome back, audience.
  • Presenter is a math enthusiast exploring logarithmic functions with imaginary components.

Logarithm of Complex Function

  • Focus on integrating the logarithm of the function:
    [ \log(1 - e^{i\Theta}) ]
    • Where ( i ) is the imaginary unit.

Series Expansion of Logarithm

  • Series expansion:
    [ \log(1 - Z) = -\sum_{k=1}^{\infty} \frac{Z^k}{k} ]
  • Replacing ( Z ) with ( e^{i\Theta} ):
    [ \log(1 - e^{i\Theta}) = -\sum_{k=1}^{\infty} \frac{e^{ik\Theta}}{k} ]

Integration Process

  • Integrate from 0 to x with respect to ( \Theta ):
    [ \int_0^x \log(1 - e^{i\Theta}) d\Theta ]
    • This leads to
      [ I = -\sum_{k=1}^{\infty} \frac{1}{k} \int_0^x e^{ik\Theta} d\Theta ]

Integral Evaluation

  • Evaluating the integral ( \int e^{ik\Theta} d\Theta ):
    • Resulting in ( \frac{e^{ik\Theta}}{ik} ) with limits from 0 to x.
  • Resulting expression:
    [ I = -\sum_{k=1}^{\infty} \frac{1}{k^2} (e^{ikx} - 1) ]

Relationship to Zeta Function

  • Recognizing ( \sum_{k=1}^{\infty} \frac{1}{k^2} ) is ( \zeta(2) = \frac{\pi^2}{6} ).
  • Thus, express as:
    [ I = i \left( -\sum_{k=1}^{\infty} \frac{e^{ikx}}{k^2} + \zeta(2) \right) ]

Polylogarithm Function

  • Introduction of the polylogarithm function:
    • Series expansion:
      [ \text{Li}s(z) = \sum{k=1}^{\infty} \frac{z^k}{k^s} ]
  • For simplicity, using ( s = 2 ) and ( z = e^{ix} ).

Different Approaches

  • Switching method:
    • Expanding the complex exponential using Euler's formula: [ e^{i\Theta} = \cos(\Theta) + i\sin(\Theta) ]

Logarithmic Properties

  • Breaking down integrals:
    • [ I = \int_0^x \log(2\sin(\Theta/2)) d\Theta + \int_0^x \log(\sin(\Theta/2) - i\cos(\Theta/2)) d\Theta ]
  • Introduces the Clausen function:
    [ I = -\text{Cl}_2(x) + i\int_0^x \left(\frac{\pi}{2} - \frac{\Theta^2}{4}\right) d\Theta ]

Final Expressions

  • Final forms of the integral:
    [ I = -\text{Cl}_2(x) - i \left( \frac{\pi}{2}x - \frac{x^2}{4} \right) ]

Conclusion

  • Equating formulas leads to beautiful results involving the Clausen function and the zeta function.
  • Exploration of series expansions provides insight into complex integrals.

Closing Remarks

  • Encourage audience engagement: Like and subscribe for more math content.