📏

Understanding 3D Figures Surface Area and Volume

Aug 8, 2024

Surface Area and Volume of 3D Figures

Overview

  • Learn to find the surface area and volume of various three-dimensional figures:
    • Cones
    • Pyramids
    • Prisms
    • Cylinders
    • Spheres
  • Grouping formulas to ease memorization and problem-solving.

Prisms and Cylinders

Definition of Prisms

  • A prism is a 3D figure with two parallel and congruent bases.
  • The bases are separated by a height.

Grouping with Cylinders

  • Cylinders are circular prisms (bases are circles).

Volume Formula

  • Volume (V) = Area of the base (B) Ă— Height (H)
    • Example:
      • Base area of a square = 16 in²
      • Height = 10 in
      • V = 16 Ă— 10 = 160 inÂł

Surface Area Formula

  • Surface Area (SA) = 2B + Perimeter of the base (P) Ă— Height (H)
    • Example:
      • Area of the base (square) = 16 in² (2 bases = 32 in²)
      • Perimeter of the base = 16 in
      • Height = 10 in
      • SA = 32 + (16 Ă— 10) = 192 in²

Triangular Prism Example

  • Volume:

    • Area of triangle base = 1/2 Ă— base Ă— height = 1/2 Ă— 3 Ă— 4 = 6
    • Overall height = 12
    • V = 6 Ă— 12 = 72 unitsÂł
  • Surface Area:

    • SA = 2B + PH, where B = triangular area,
    • Total surface area = 144 + 12 = 156 units²

Cylinders

Volume of Cylinders

  • Volume (V) = Area of the base (circle) Ă— Height
    • Base area = Ď€r²
    • Example:
      • Radius = 3, Height = 6
      • V = Ď€ Ă— (3²) Ă— 6 = 54Ď€ mÂł

Surface Area of Cylinders

  • Surface Area (SA) = 2B + PH
    • Example:
      • Two bases: 2Ď€r² (2 circles)
      • Perimeter = 2Ď€r
      • SA = 54Ď€ m²

Pyramids and Cones

Definition

  • Pyramids and cones both have one base.
  • Pyramids have a square base; cones have a circular base.

Volume Formula

  • Volume (V) = 1/3 Ă— Area of the base (B) Ă— Height (H)

    • Pyramid Example:
      • Base area (square) = 6 Ă— 6 = 36
      • Overall height = 4
      • V = 1/3 Ă— 36 Ă— 4 = 48 inÂł
  • Cone Example:

    • Base area = Ď€r², with r = 5
    • V = 1/3 Ă— Ď€ Ă— 25 Ă— 12 = 100Ď€ unitsÂł

Surface Area Formula

  • Surface Area (SA) = Area of base + 1/2 Ă— Perimeter Ă— Slant height

    • Pyramid Example:
      • Base area = 36, Perimeter = 24, Slant height = 5
      • SA = 36 + 60 = 96 units²
  • Cone Example:

    • SA = Ď€r² + 1/2 Ă— (2Ď€r) Ă— slant height
    • SA = 25Ď€ + 65Ď€ = 90Ď€ units²

Spheres

Definition

  • A sphere is a set of all points equidistant from a center point.

Volume Formula

  • Volume (V) = 4/3Ď€rÂł
    • Example:
      • For radius r = 3, V = 4/3 Ă— Ď€ Ă— (3Âł) = 36Ď€ unitsÂł

Surface Area Formula

  • Surface Area (SA) = 4Ď€r²
    • Example:
      • For radius r = 3, SA = 4 Ă— Ď€ Ă— (3²) = 36Ď€ units²

Conclusion

  • Group figures to simplify learning.
  • Remember the key formulas for volume and surface area:
    • Prisms/Cylinders: V = B Ă— H, SA = 2B + PH
    • Pyramids/Cones: V = 1/3 Ă— B Ă— H, SA = B + 1/2 Ă— P Ă— l
    • Spheres: V = 4/3Ď€rÂł, SA = 4Ď€r²
  • Additional resources available for SAT/ACT prep.