Calculus 2 Final Exam Cheat Sheet
University of Arkansas - MATH 25004 (Spring 2025)
1. Integration Techniques
Substitution
- Formula: ( \int f(g(x))g'(x),dx \Rightarrow u = g(x),\ du = g'(x)dx )
- Example: ( \int e^{3x+2}dx ), let ( u = 3x + 2 )
Integration by Parts
- Formula: ( \int u,dv = uv - \int v,du )
- LIATE rule for choosing ( u ) : Log, Inverse trig, Algebraic, Trig, Exponential
- Example: ( \int \sqrt{x}\ln(x)dx )
Trig Substitution
- ( \sqrt{a^2 - x^2} \Rightarrow x = a \sin\theta )
- ( \sqrt{a^2 + x^2} \Rightarrow x = a \tan\theta )
- ( \sqrt{x^2 - a^2} \Rightarrow x = a \sec\theta )
- Example: ( \int x^3\sqrt{16 - x^2},dx )
Trig Integrals
- Identities: ( \sin^2x = 1 - \cos^2x, \tan^2x + 1 = \sec^2x )
- Example: ( \int \tan^4(\theta)\sec^6(\theta),d\theta )
Partial Fractions
- Linear: ( \frac{A}{x - r} )
- Irreducible quad: ( \frac{Ax + B}{x^2 + bx + c} )
- Example: ( \int \frac{6x^3 + 19x^2 + 12x + 5}{(x+1)^3(x^2+1)} dx )
2. Applications of Integration
Area Between Curves
- Horizontal slices: ( \int (f(x) - g(x)) dx )
- Vertical slices: ( \int (f(y) - g(y)) dy )
- Example: Region bounded by ( y = \sqrt{x},\ x = 9,\ y = 0 )
Volumes of Revolution
Disk/Washer Method
- About x-axis: ( \pi\int_{a}^{b} (R(x)^2 - r(x)^2) dx )
- About y-axis: ( \pi\int_{c}^{d} (R(y)^2 - r(y)^2) dy )
- Example: Revolving ( y = \sqrt{x} ) around x- and y-axes
Shell Method
- About y-axis: ( 2\pi\int_{a}^{b} x\cdot f(x) dx )
- About x-axis: ( 2\pi\int_{c}^{d} y\cdot g(y) dy )
- Example: Volume by revolving ( y = x^2 + 1 ) about y-axis
Work
- Pumping liquids: ( W = \rho g \int_{a}^{b} (\text{height to lift}) \cdot A(y) dy )
- Example: Inverted cone with height 7 m and radius 2 m_
3. Sequences & Series
Definitions
- Sequence: ( a_n )
- Series: ( \sum a_n )
- Geometric: ( a, ar, ar^2, \ldots \Rightarrow S = \frac{a}{1 - r} \text{ if } |r| < 1 )
- Example: ( 0.52323\ldots ) as a geometric series
Convergence Tests
- Divergence Test: If ( \lim a_n \neq 0 ), then ( \sum a_n ) diverges
- Example: ( \sum \frac{k^6}{\ln k} )
- p-series: ( \sum \frac{1}{n^p} ) converges if ( p > 1 )
- Comparison/Limit Comparison: Compare to known series
- Example: ( \sum \frac{n^2}{n^3 - \ln(n)} )
- Ratio/Root Test: Use for power series and factorials
- Example: ( \sum \frac{22^n \sqrt{n}}{n!} )
Absolute vs Conditional Convergence
- Absolute: ( \sum |a_n| ) converges
- Conditional: ( \sum a_n ) converges, but ( \sum |a_n| ) does not
- Example: Compare Series 1 and 2: ( \sum \frac{(-1)^n(n+1)}{2n^2 + 5} )
4. Power & Taylor Series
Common Power Series
- ( \frac{1}{1 - x} = \sum x^n )
- ( e^x = \sum \frac{x^n}{n!} )
- ( \sin x = \sum \frac{(-1)^n x^{2n+1}}{(2n+1)!} )
- ( \cos x = \sum \frac{(-1)^n x^{2n}}{(2n)!} )
- ( \ln(1 + x) = \sum \frac{(-1)^n x^{n+1}}{n+1} )
- Example: Maclaurin of ( \frac{x^5}{3 - 2x^2} )
Taylor Series
- ( f(x) = \sum \frac{f^{(n)}(a)}{n!}(x - a)^n )
- Example: ( f(x) = 8 - 2x - 3x^2 + 2x^3 ) about ( x_0 = 1 )
Interval of Convergence
- Use Ratio or Root Test, then test endpoints separately
- Example: ( \sum \frac{(-1)^n(x+3)^n}{\sqrt{n}} )
5. Parametric & Polar Curves
Parametric Equations
- ( \frac{dy}{dx} = \frac{dy/dt}{dx/dt} )
- Arc Length: ( \int_{a}^{b} \sqrt{(dx/dt)^2 + (dy/dt)^2},dt )
- Example: ( x = 2t^2 + 1,\ y = t^3 - t^2 + t - 1 )_
Polar Coordinates
- Area: ( A = \frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta )
- Arc Length: ( \int \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta )
- Convert:
- ( x = r \cos \theta,\ y = r \sin \theta )
- ( r^2 = x^2 + y^2,\ \tan \theta = y/x )
- Example: Area of inner loop of ( r = 1 + 2 \sin(\theta) )_