Coconote
AI notes
AI voice & video notes
Export note
Try for free
Integration Techniques: Parts and u-Substitution
Aug 23, 2024
Lecture Notes: Integration by Parts and u-Substitution Examples
Example 1: Integral of $e^{2x} \cdot \sin(3x)$
Integration by Parts Setup
Choose $u = e^{2x}$ and $dv = \sin(3x)dx$.
Derivative: $du = 2e^{2x}dx$.
Integral: $v = -\frac{1}{3} \cos(3x)$.
Integration by parts formula: $\int u , dv = uv - \int v , du$.
First Step
$uv = -\frac{1}{3} e^{2x} \cos(3x)$.
$\int v , du = -\frac{2}{3} \int e^{2x} \sin(3x) dx$.
The integral does not become simpler; use integration by parts again.
Second Integration by Parts
Choose again $u = e^{2x}$ and $dv = \cos(3x)dx$.
$du = 2e^{2x}dx$.
$v = \frac{1}{3} \sin(3x)$.
Apply integration by parts: $\frac{1}{3} e^{2x} \sin(3x) - \frac{2}{3} \int e^{2x} \sin(3x) dx$.
Solving the Integral
Recognize the integral forms a cycle and solve by algebraic manipulation.
Final result after solving algebraically:
$\int e^{2x} \sin(3x) dx = \frac{9}{13} \left(-\frac{1}{3} e^{2x} \cos(3x) + \frac{2}{3} \left(\frac{1}{3} e^{2x} \sin(3x)\right)\right) + C$.
Example 2: Integral of $\text{arcsin}(3t)$
Setup and Derivatives
Choose $u = \text{arcsin}(3t)$, $dv = dt$.
Derivative: $du = \frac{3}{\sqrt{1-(3t)^2}} dt$.
$v = t$.
Integration by parts formula: $\int u , dv = uv - \int v , du$.
Integration by Parts
$uv = t \cdot \text{arcsin}(3t)$.
$\int v , du = \int \frac{3t}{\sqrt{1-9t^2}} dt$.
u-Substitution for Remaining Integral
Use $u$-substitution: $u = 1 - 9t^2$.
$du = -18t , dt$.
$6 , du = -3t , dt$.
Substitute and integrate: $\int \frac{1}{\sqrt{u}} du = 2\sqrt{u} + C$.
Final Result
Substitute back $u = 1 - 9t^2$.
Combine results: $t \cdot \text{arcsin}(3t) + \frac{1}{3} \cdot 2\sqrt{1-9t^2} + C$.
📄
Full transcript