🌀

Mastering the Unit Circle and Trigonometry

May 11, 2025

Memorizing the Unit Circle

Introduction to the Unit Circle

  • Angles are measured in radians.
  • Full Circle: 2Ï€
  • Half Circle: Ï€
  • Quarter Circle: Ï€/2
  • Circle divided into 8 parts:
    • Ï€/4, Ï€/2, 3Ï€/4, Ï€
    • 5Ï€/4, 3Ï€/2, 7Ï€/4, 2Ï€

Breaking Down the Unit Circle Further

  • Angles in Sixth Parts:
    • Ï€/6, Ï€/3, Ï€/2
    • 2Ï€/3, 5Ï€/6, Ï€
    • 7Ï€/6, 4Ï€/3, 3Ï€/2
    • 5Ï€/3, 11Ï€/6, 2Ï€

Values on Axes

  • X-axis:
    • Right: x = 1
    • Left: x = -1
    • Center: x = 0
  • Y-axis:
    • Top: y = 1
    • Bottom: y = -1

Quadrants Overview

  • Quadrant 1 (Upper Right): x and y positive
  • Quadrant 2 (Upper Left): x negative, y positive
  • Quadrant 3 (Bottom Left): x and y negative
  • Quadrant 4 (Bottom Right): x positive, y negative

Calculating Values in Quadrants

  • Quadrant 1 Values:
    • Pi/6: (( \frac{\sqrt{1}}{2} ), ( \frac{\sqrt{3}}{2} ))
    • Pi/4: (( \frac{\sqrt{2}}{2} ), ( \frac{\sqrt{2}}{2} ))
    • Pi/3: (( \frac{\sqrt{3}}{2} ), ( \frac{\sqrt{1}}{2} ))
  • Reflections in Other Quadrants:
    • Quadrant 2: Reflect x, ( x < 0 )
    • Quadrant 3: x and y both negative
    • Quadrant 4: Reflect y, ( y < 0 )

Converting Radians to Degrees

  • Pi corresponds to 180 degrees
  • Conversion Examples:
    • ( \frac{\pi}{6} = 30^\circ )
    • ( \frac{\pi}{4} = 45^\circ )
    • ( \frac{\pi}{3} = 60^\circ )
    • ( \frac{3\pi}{2} = 270^\circ )

Evaluating Trigonometric Functions

  • Sine: Use y-value
    • Example: ( \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} )
  • Cosine: Use x-value
    • Example: ( \cos(\frac{7\pi}{6}) = -\frac{\sqrt{3}}{2} )
  • Tangent: y over x (sine/cosine)
    • Example: ( \tan(\frac{\pi}{3}) = \sqrt{3} )

Conclusion

  • Understanding the unit circle is crucial for evaluating trigonometric functions.
  • Practice converting angles and using the unit circle to build intuition for trigonometric evaluations.

Feedback and engagement are welcomed.