Memorizing the Unit Circle
Introduction to the Unit Circle
- Angles are measured in radians.
- Full Circle: 2Ï€
- Half Circle: π
- Quarter Circle: π/2
- Circle divided into 8 parts:
- π/4, π/2, 3π/4, π
- 5Ï€/4, 3Ï€/2, 7Ï€/4, 2Ï€
Breaking Down the Unit Circle Further
- Angles in Sixth Parts:
- π/6, π/3, π/2
- 2π/3, 5π/6, π
- 7Ï€/6, 4Ï€/3, 3Ï€/2
- 5Ï€/3, 11Ï€/6, 2Ï€
Values on Axes
- X-axis:
- Right: x = 1
- Left: x = -1
- Center: x = 0
- Y-axis:
- Top: y = 1
- Bottom: y = -1
Quadrants Overview
- Quadrant 1 (Upper Right): x and y positive
- Quadrant 2 (Upper Left): x negative, y positive
- Quadrant 3 (Bottom Left): x and y negative
- Quadrant 4 (Bottom Right): x positive, y negative
Calculating Values in Quadrants
- Quadrant 1 Values:
- Pi/6: (( \frac{\sqrt{1}}{2} ), ( \frac{\sqrt{3}}{2} ))
- Pi/4: (( \frac{\sqrt{2}}{2} ), ( \frac{\sqrt{2}}{2} ))
- Pi/3: (( \frac{\sqrt{3}}{2} ), ( \frac{\sqrt{1}}{2} ))
- Reflections in Other Quadrants:
- Quadrant 2: Reflect x, ( x < 0 )
- Quadrant 3: x and y both negative
- Quadrant 4: Reflect y, ( y < 0 )
Converting Radians to Degrees
- Pi corresponds to 180 degrees
- Conversion Examples:
- ( \frac{\pi}{6} = 30^\circ )
- ( \frac{\pi}{4} = 45^\circ )
- ( \frac{\pi}{3} = 60^\circ )
- ( \frac{3\pi}{2} = 270^\circ )
Evaluating Trigonometric Functions
- Sine: Use y-value
- Example: ( \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} )
- Cosine: Use x-value
- Example: ( \cos(\frac{7\pi}{6}) = -\frac{\sqrt{3}}{2} )
- Tangent: y over x (sine/cosine)
- Example: ( \tan(\frac{\pi}{3}) = \sqrt{3} )
Conclusion
- Understanding the unit circle is crucial for evaluating trigonometric functions.
- Practice converting angles and using the unit circle to build intuition for trigonometric evaluations.
Feedback and engagement are welcomed.