Jul 19, 2024
L^(-1){F(s)} = 1 / (2πi) ∫{γ-i∞, γ+i∞} F(s) e^(st) ds
∮{C} = ∫{γ} + ∫{C+} + ∫{C-} + ∫{R}
Summarize the procedure: Using Cauchy's Integral Formula and proving boundary integrals tend to zero proves the desired inverse Laplace transform result.
Key Result: ∫{γ} of (e^(st) / (s - a)) ds = e^(at).
Armed with this method, complex integrals and inverse transforms can be tackled methodically.