Jul 19, 2024
y'' + p(x)y' + q(x)y = g(x)
, where p(x)
, q(x)
, and g(x)
are continuous functions.g(x) = 0
, it's a homogeneous equation; otherwise, it's non-homogeneous.a, b, c
as ay'' + by' + cy = 0
.y = e^(rx)
.y' = re^(rx)
y'' = r²e^(rx)
ar²e^(rx) + bre^(rx) + ce^(rx) = 0
e^(rx)
: e^(rx)(ar² + br + c) = 0
ar² + br + c = 0
ar² + br + c = 0
r = (-b ± sqrt(b² - 4ac)) / 2a
b² - 4ac > 0
):r1
, r2
are real and distincty = C1 * e^(r1x) + C2 * e^(r2x)
b² - 4ac = 0
):r
is real and repeatedy = (C1 + C2x) * e^(rx)
b² - 4ac < 0
):r = α ± βi
y = e^(αx) * (C1*cos(βx) + C2*sin(βx))
y'' - 5y' + 6y = 0
r² - 5r + 6 = 0
(r - 2)(r - 3) = 0
r = 2 and r = 3
y = C1 * e^(2x) + C2 * e^(3x)
y'' - 6y' + 9y = 0
r² - 6r + 9 = 0
(r - 3)² = 0
r = 3
(repeated)y = (C1 + C2*x) * e^(3x)
9y'' + 24y' + 16y = 0
9r² + 24r + 16 = 0
(3r + 4)² = 0
r = -4/3
(repeated)y = (C1 + C2*x) * e^(-4x/3)
y'' + 8y' + 25y = 0
r² + 8r + 25 = 0
r = -4 ± 3i
α = -4, β = 3
y = e^(-4x) * (C1*cos(3x) + C2*sin(3x))
y'' + 4y = 0
, y(0) = 4
, y'(0) = 6
r² + 4 = 0
, r = ±2i
y = C1*cos(2x) + C2*sin(2x)
y(0) = 4
: C1 = 4
y'(0) = 6
: 2C2 = 6
, C2 = 3
y = 4*cos(2x) + 3*sin(2x)
y'' - 2y' + y = 0
, boundary conditions: y(0) = 3
, y(1) = 7e
r² - 2r + 1 = 0
, r = 1
y = (C1 + C2*x) * e^x
y(0) = 3
: C1 = 3
y(1) = 7e
: Solving for C2
gives 4e
y = 3e^x + 4x*e^x