Jul 19, 2024
y'' + p(x)y' + q(x)y = g(x), where p(x), q(x), and g(x) are continuous functions.g(x) = 0, it's a homogeneous equation; otherwise, it's non-homogeneous.a, b, c as ay'' + by' + cy = 0.y = e^(rx).y' = re^(rx)y'' = r²e^(rx)ar²e^(rx) + bre^(rx) + ce^(rx) = 0e^(rx): e^(rx)(ar² + br + c) = 0ar² + br + c = 0ar² + br + c = 0r = (-b ± sqrt(b² - 4ac)) / 2ab² - 4ac > 0):r1, r2 are real and distinct
y = C1 * e^(r1x) + C2 * e^(r2x)b² - 4ac = 0):r is real and repeated
y = (C1 + C2x) * e^(rx)*b² - 4ac < 0):r = α ± βi
y = e^(αx) * (C1*cos(βx) + C2*sin(βx))*y'' - 5y' + 6y = 0r² - 5r + 6 = 0(r - 2)(r - 3) = 0r = 2 and r = 3y = C1 * e^(2x) + C2 * e^(3x)y'' - 6y' + 9y = 0r² - 6r + 9 = 0(r - 3)² = 0r = 3 (repeated)y = (C1 + C2*x) * e^(3x)9y'' + 24y' + 16y = 09r² + 24r + 16 = 0(3r + 4)² = 0r = -4/3 (repeated)y = (C1 + C2*x) * e^(-4x/3)y'' + 8y' + 25y = 0r² + 8r + 25 = 0r = -4 ± 3iα = -4, β = 3y = e^(-4x) * (C1*cos(3x) + C2*sin(3x))*y'' + 4y = 0, y(0) = 4, y'(0) = 6r² + 4 = 0, r = ±2iy = C1*cos(2x) + C2*sin(2x)y(0) = 4: C1 = 4y'(0) = 6: 2C2 = 6, C2 = 3y = 4*cos(2x) + 3*sin(2x)y'' - 2y' + y = 0, boundary conditions: y(0) = 3, y(1) = 7er² - 2r + 1 = 0, r = 1y = (C1 + C2*x) * e^xy(0) = 3: C1 = 3y(1) = 7e: Solving for C2 gives 4ey = 3e^x + 4x*e^x*