ट्रिग्नोमेट्री इन डिटेल्स - Lecture Summary (By Master DJ Harsh Priyam)
Overview
- Focus on analyzing previous years' questions to understand trends in trigonometry questions.
- Emphasis on practice; theory session aims to cover everything needed theoretically.
- Aim to provide enough knowledge so external references aren't needed—though practice is essential.
- Topics include trigonometric formulas, their applications, and problem-solving for different exam levels.
Key Concepts and Formulas
Basics of Trigonometry Functions
- Sine (sin): $rac{P}{H}$
- Cosine (cos): $rac{B}{H}$
- Tangent (tan): $rac{P}{B}$
Trigonometric Identities
- $ ext{sin}^2 heta + ext{cos}^2 heta = 1$
- $1 + ext{tan}^2 heta = ext{sec}^2 heta$
Trigonometric Ratios and Quadrants
- First: $0^ ext{°} ext{to } 90^ ext{°}$ - All functions are positive
- Second: $90^ ext{°} ext{to } 180^ ext{°}$ - Sin and cosec are positive
- Third: $180^ ext{°} ext{to } 270^ ext{°}$ - Tan and cot are positive
- Fourth: $270^ ext{°} ext{to } 360^ ext{°}$ - Cos and sec are positive
Conversion Between Degrees and Radians
- $180^ ext{°} = ext{π radians}$
- To convert degrees to radians: multiply by $rac{π}{180}$
- To convert radians to degrees: multiply by $rac{180}{π}$
Compound Angle Formulas
- $ ext{sin}(A ext{±} B) = ext{sin}A ext{cos}B ext{±} ext{cos}A ext{sin}B$
- $ ext{cos}(A ext{±} B) = ext{cos}A ext{cos}B ext{∓} ext{sin}A ext{sin}B$
- $ ext{tan}(A ext{±} B) = rac{ ext{tan}A ext{±} ext{tan}B}{1 ext{∓} ext{tan}A ext{tan}B}$
Multiple Angle Formulas
- $ ext{sin}(2A) = 2 ext{sin}A ext{cos}A$
- $ ext{cos}(2A) = ext{cos}^2A - ext{sin}^2A = 2 ext{cos}^2A - 1 = 1 - 2 ext{sin}^2A$
- $ ext{tan}(2A) = rac{2 ext{tan}A}{1 - ext{tan}^2A}$
Triple Angle Formulas
- $ ext{sin}(3A) = 3 ext{sin}A - 4 ext{sin}^3A$
- $ ext{cos}(3A) = 4 ext{cos}^3A - 3 ext{cos}A$
- $ ext{tan}(3A) = rac{3 ext{tan}A - ext{tan}^3A}{1 - 3 ext{tan}^2A}$
Transformations
- $ ext{sin}C + ext{sin}D = 2 ext{sin} (rac{C+D}{2}) ext{cos} (rac{C-D}{2})$
- $ ext{sin}C - ext{sin}D = 2 ext{cos} (rac{C+D}{2}) ext{sin} (rac{C-D}{2})$
- $ ext{cos}C + ext{cos}D = 2 ext{cos} (rac{C+D}{2}) ext{cos} (rac{C-D}{2})$
- $ ext{cos}C - ext{cos}D = -2 ext{sin} (rac{C+D}{2}) ext{sin} (rac{C-D}{2})$
Sin and Cos Values at Specific Angles
- Important values:
- $ ext{sin} rac{π}{6} = rac{1}{2} $
- $ ext{cos} rac{π}{3} = rac{1}{2} $
- $ ext{tan} 45^ ext{°} = 1 $
Maximum and Minimum Values of Trigonometric Expressions
- For expressions of the type $a ext{sin}θ + b ext{cos}θ$, maximum value is $ ext{√}(a^2 + b^2)$, minimum value is $- ext{√}(a^2 + b^2)$.
- Similar for $a ext{cos}θ + b ext{sin}θ$.
Examples and Applications
Question 1: Convert 30° to radians.
- $30° = 30 imes rac{π}{180} = rac{π}{6}$ radians.
Question 2: Find $ ext{sin}(RA)$ if $ ext{cos}(RA) = 0.5$ and angle lies in 2nd quadrant.
- $ ext{sin}(RA) = ext{√}(1 - ext{cos}^2(RA)) = ext{√}(0.75) = rac{ ext{√}3}{2}$
Question 3: If $ ext{tanP} = 3$, find $ ext{sec}^2P$.
- $1 + ext{tan}^2P= ext{sec}^2P = 1 + 9 = 10$
Trigonometric Equations and Quadratic Forms
- Convert trigonometric equations into quadratic forms for easy solving.
- Use identity transformations like ${ 1 - ext{cos}x}$ in solving equations.
Advanced Examples
- Solving equations involving multiple angles (e.g., $2x, 3x$)
- Trig values in different quadrants.
Graphs of Trigonometric Functions
- Sinx Graph: Oscillates between -1 and 1.
- Cosx Graph: Starts at 1, similar oscillation to sinx.
- Tanx Graph: Vertical asymptotes at $ rac{π}{2}, - rac{π}{2}$.
True/False Statements - K-value questions
- Max/Min values: $a ext{sin}θ ext{+/-} b ext{cos}θ$
- $ ext{Max value} = ext{√}(a^2 + b^2)$
- $ ext{Min value} = ext{-√}(a^2 + b^2)$
Tools And Recommended Practice
- Regular use of values and identities in solving problems.
- Use graphing tools for better visualization of trigonometric functions.
- Practice with elements from texts like Vedantu's Tattva module.
Recommendation: Keep revising these fundamentals and approach problems with a fresh mindset. Focus on understanding the transformation of trigonometric expressions and solving them using standard identities.
Next Steps: Explore combinatorial usage of these formulas in calculus and algebraic identities.
Key Takeaway: Mastering formulas, understanding their application in different quadrants, and visualizing functions graphically are pivotal in excelling in trigonometry.