ЁЯФв

Notes: Lecture on Number System

Jun 22, 2024

Lecture on Number System

Introduction

  • Focus on creating questions from each line.
  • Topic of discussion: рд╕рдВрдЦреНтАНрдпрд╛ рдкрджреНрдзрддрд┐ (Number System).

Types of Numbers

  • Complex Numbers (рд╕рдореНрдорд┐рд╢реНрд░ рд╕рдВрдЦреНрдпрд╛рдПрдВ)
    • Represented as a + ib where a is the real part and b is the imaginary part.
    • Complex parts: Real part (рд╡рд╛рд╕реНрддрд╡рд┐рдХ рднрд╛рдЧ) and Imaginary part (рдХрд╛рд▓реНрдкрдирд┐рдХ рднрд╛рдЧ).
  • Distribution of Real Numbers (рд╡рд╛рд╕реНрддрд╡рд┐рдХ рд╕рдВрдЦреНрдпрд╛рдПрдВ)
    • Rational (рдкрд░рд┐рдореЗрдп), Irrational (рдЕрдкрд░рд┐рдореЗрдп), National Numbers (рдкреНрд░рд╛рдХреГрддрд┐рдХ рд╕рдВрдЦреНрдпрд╛рдПрдВ), Integers (рдкреВрд░реНрдгрд╛рдВрдХ), Whole Numbers (рдкреВрд░реНрдг рд╕рдВрдЦреНрдпрд╛рдПрдВ), Natural Numbers (рдкреНрд░рд╛рдХреГрддрд┐рдХ рд╕рдВрдЦреНрдпрд╛рдПрдВ).

Integers (рдкреВрд░реНрдгрд╛рдВрдХ)

  • Defined as whole numbers including negative and positive.
  • Examples: -тИЮ to +тИЮ along the number line.
  • Greatest Integer Function (рдЧреНрд░реЗрдЯреЗрд╕реНрдЯ рдЗрдВрдЯреАрдЬрд░ рдлрдВрдХреНрд╢рди)
    • Example: Greatest integer of 1.2 is 1. -Notation: [x], Greatest Integer is represented by [x].

Properties of Integers

  • Positive Integers: Whole positive numbers including zero.
  • Negative Integers: Whole negative numbers.
  • Zero: Classified as an even integer

Natural Numbers (рдкреНрд░рд╛рдХреГрддрд┐рдХ рд╕рдВрдЦреНрдпрд╛рдПрдВ)

  • Start from 1 and go up: 1, 2, 3, 4,...
  • Do not include zero and negative numbers.

Whole Numbers (рдкреВрд░реНрдг рд╕рдВрдЦреНрдпрд╛рдПрдВ)

  • Include all natural numbers and zero.
  • Examples: 0, 1, 2, 3, 4, 5, ...

Prime Numbers (рдЕрднрд╛рдЬреНрдп рд╕рдВрдЦреНрдпрд╛)

  • Defined as numbers divisible by 1 and itself.
  • Smallest prime number: 2 (also only even prime number)
  • Examples: 2, 3, 5, 7, 11, 13, 17...

Prime Numbers within Specific Ranges

  • 1 to 25: 9 primes.
  • 25 to 50: 10 primes.
  • 50 to 75: 6 primes.
  • 75 to 100: 4 primes.

Composite Numbers (рд╕рдВрдпреЛрдЬрд┐рдд рд╕рдВрдЦреНрдпрд╛рдПрдВ)

  • Defined as numbers that are not prime.
  • Examples: 4, 6, 8, 9, 10...

Twin Primes (рджреНрд╡рд┐рдХ рдЕрднрд╛рдЬреНрдп рд╕рдВрдЦреНрдпрд╛рдПрдВ)

  • Pairs of prime numbers with a difference of two.
  • Examples: 3, 5; 11, 13; 17, 19.

Co-prime Numbers (рд╕рдо рдЕрднрд╛рдЬреНрдп рд╕рдВрдЦреНрдпрд╛рдПрдВ)

  • Pairs of numbers having a GCD of 1.
  • Examples: 25 and 37.

Perfect Numbers (рдкреВрд░реНрдгрд╛рдВрдХ)

  • Numbers whose proper divisors sum to the number itself.
  • Examples: 6, 28, 496, 8128.

Divisibility Rules (рднрд╛рдЧ рдорд╣рд╛рд░рдд рдирд┐рдпрдо)

  • 2: Last digit is even.
  • 3: Sum of digits is divisible by 3.
  • 5: Last digit is either 0 or 5.
  • 9: Sum of digits divisible by 9.
  • 11: Difference between sum of digits at odd places and sum of digits at even places either 0 or a multiple of 11.

Place Value and Face Value (рд╕реНрдерд╛рдиреАрдп рдорд╛рди рдФрд░ рдЬрд╛рддреАрдп рдорд╛рди)

  • Place value depends on digit's position in the number.
  • Face value is the digit itself.
  • Examples:
    • Number 5789:
      • Place Value: 5 in thousands place = 5000
      • Face Value: 5 = 5.

Place Values in Decimals

  • Example: 54.321
    • Place Value of 4 in the tens place = 40.
    • Place Value of 3 in the tenths place = 0.3.

Local and Decimal Systems (рджрд╢рдорд▓рд╡ рдкреНрд░рдгрд╛рд▓реА)

  • Understanding how each digit represents powers of 10.
  • Example: 321.45 = 3x100 + 2x10 + 1x1 + 4x0.1 + 5x0.01.