Jul 10, 2024
m x n
(m-rows, n-columns)Aij
where i is row, j is column.A = A^T
A^T = -A
, all diagonal elements are 0.k
.A
is m x n
and B
is n x p
, the result is m x p
.(A^T)^T = A
, (A+B)^T = A^T + B^T
, (kA)^T = kA^T
, (AB)^T = B^T A^T
det(AB) = det(A) det(B)
.det(A) = ad - bc
if A = [a b; c d]
.A^(-1) = adj(A) / det(A)
(AB)^(-1) = B^(-1) A^(-1)
, (A^T)^(-1) = (A^(-1))^T
tr(A)
.|A - λI| = 0
, used in Cayley-Hamilton theorem.A - λI = 0
.AX = B
and solutions using matrix inverses.A^(k+1) = A
.A*A^T = I
.A^k = 0
for some k.A^2 = A
.