Jul 10, 2024
m x n (m-rows, n-columns)Aij where i is row, j is column.A = A^TA^T = -A, all diagonal elements are 0.k.A is m x n and B is n x p, the result is m x p.(A^T)^T = A, (A+B)^T = A^T + B^T, (kA)^T = kA^T, (AB)^T = B^T A^Tdet(AB) = det(A) det(B).det(A) = ad - bc if A = [a b; c d].A^(-1) = adj(A) / det(A)(AB)^(-1) = B^(-1) A^(-1), (A^T)^(-1) = (A^(-1))^Ttr(A).|A - ╬╗I| = 0, used in Cayley-Hamilton theorem.A - ╬╗I = 0.AX = B and solutions using matrix inverses.A^(k+1) = A.A*A^T = I.A^k = 0 for some k.A^2 = A.*