Quantitative Verfahren in der Chromatographie

May 24, 2024

Quantitative Verfahren in der Chromatographie

Einleitung

  • Ziel: Einführung in die quantitative Auswertung in der Chromatographie
  • Wichtig für: Auszubildende in Laborberufen (Chemielaborant/-in, CTA, Studierende)
  • Voraussetzungen: Chemisch-analytisches Rechnen, Dreisatz, Lambert-Beer'sches Gesetz

Vorbereitung

  • Benötigt: Stift, Papier, Taschenrechner
  • Arbeitsblatt: "Quantitative Verfahren in der Chromatographie" herunterladen und ausdrucken (besonders die ersten beiden Seiten)
  • Landen Sie die Aufgabe bis 1.1 (Kalibrierdiagramm zeichnen) durch

Externer Standard

  • Probelauf: Enthält bekannte Kandidaten und den zu bestimmenden Analyt
  • Kalibrierlauf: Enthält nur den bekannten Kalibrierstoff
  • Ziel: Mathematischer Zusammenhang zwischen Gehalt und Fläche ermitteln
  • Definition: Probelauf + Kalibrierläufe mit bekannten Gehalten

Ein-Punkt Kalibrierung

  • Annahme: Lösung mit Gehalt 0 -> Signal 0
  • Praktische Justierung: Anzeige auf null stellen (Blankwert)

Aufgabe 1.2

  • Dreisatz zur Bestimmung des Gehalts einer Probe anhand der Fläche
  • Gehaltsberechnung Beispiel:
    • 16,49 ng/mL entspricht 17.184 Flächeneinheiten
    • zu berechnender Gehalt bei 14.1357 Flächeneinheiten
    • Computation: X = (14.1357 / 17.184) * 16.49

Nachteile der Ein-Punkt Kalibrierung

  • Schwankungen in der Detektorempfindlichkeit
    • Lösung: Läufe unmittelbar nacheinander starten
  • Abweichungen bei größeren Gehaltsbereichen
    • Lösung: Nahen Kalibrierpunkt nahe dem Probepunkt setzen

Kalibrierfaktor

  • Alternativmethode: Kalibrierfaktor f = Gehalt / Signaleinheit
  • Nutzung des Kalibrierfaktors zur Gehaltsberechnung:
    • f = 16.49 ng/mL / 17.184 area units
    • [Gehalt] = f * [Signal bei der Probe]

Zwei-Punkt Kalibrierung

  • Höhere Genauigkeit durch zwei Kalibrierpunkte
  • Kleinere Abstände zwischen Kalibrierpunkten erhöhen die Genauigkeit
  • Dreisatz zur Bestimmung des Gehalts bei der Zwei-Punkt Kalibrierung:
    • Unterschied zwischen Kalibrierpunkten und Probenpunkten ermitteln und verwenden

Response-Faktor

  • Maß für die Detektionsempfindlichkeit
  • Definition: Signalfläche pro Gehalt (Beziehung Δy/Δx für Geradensteigung)
  • Höherer Response-Faktor = empfindlichere Detektion
  • Umgekehrt proportional zum Kalibrierfaktor (rf = 1/f)

Lambert-Beer'sches Gesetz

  • Anwendung des Response-Faktors auch hier möglich
  • Proportionalität zwischen Absorption, Konzentration und Schichtdicke
  • Höhere Steigung = empfindlichere Detektion

Abschluss

  • Das Lernvideo endet hier
  • Die weiteren Teile behandeln: Flächenprozentmethoden und interne Standards