Transcript for:
Giải tích hàm nhiều biến

Title: Gii tch 2 cho khi k thut URL Source: blob://pdf/417dec02-70c2-42b0-a33d-f2981bef3554 Markdown Content: ## Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 1 / 42 Gii thiu chung Gii thiu chung v mn Gii tch 2 S tn ch: 3 im tng kt gm: im qu trnh (40 %) v im thi (60 %), trong im qu trnh gm: im im danh, im bi tp nhm v im kim tra 1,2 Hnh thc thi: > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 2 / 42 ## Gii thiu chung Gii thiu chung v mn Gii tch 2 S tn ch: 3 im tng kt gm: im qu trnh (40 %) v im thi (60 %), trong im qu trnh gm: im im danh, im bi tp nhm v im kim tra 1,2 Hnh thc thi: > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 2 / 42 ## Gii thiu chung Gii thiu chung v mn Gii tch 2 S tn ch: 3 im tng kt gm: im qu trnh (40 %) v im thi (60 %), trong im qu trnh gm: im im danh, im bi tp nhm v im kim tra 1,2 Hnh thc thi: > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 2 / 42 ## Gii thiu chung Gii thiu chung v mn Gii tch 2 S tn ch: 3 im tng kt gm: im qu trnh (40 %) v im thi (60 %), trong im qu trnh gm: im im danh, im bi tp nhm v im kim tra 1,2 Hnh thc thi: > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 2 / 42 ## Gii thiu chung Ti liu tham kho Gio trnh Gii tch 2 - HGTVT Ton cao cp A3 - NXB Gio dc Gii tch ton hc (Cc VD v bi tp)-Tp 2- Liasko > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 3 / 42 ## Gii thiu chung Ti liu tham kho Gio trnh Gii tch 2 - HGTVT Ton cao cp A3 - NXB Gio dc Gii tch ton hc (Cc VD v bi tp)-Tp 2- Liasko > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 3 / 42 ## Gii thiu chung Ti liu tham kho Gio trnh Gii tch 2 - HGTVT Ton cao cp A3 - NXB Gio dc Gii tch ton hc (Cc VD v bi tp)-Tp 2- Liasko > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 3 / 42 ## Chng 1. Hm s nhiu bin Chng 1. Hm s nhiu bin 1.1. Mt s khi nim chung v hm s nhiu bin 1.1.1. Hm s 2 bin xy dng l thuyt cho hm s thc nhiu bin s ta bt u t cc khi nim i vi hm s 2 bin, vic pht biu cho l thuyt ca hm s nhiu hn 2 bin c tin hnh tng t. a) Cc khi nim Cho D l mt min trong mt phng Oxy , ta ni rng trn D xc nh mt hm s f nu vi mi im M(x, y ) D tn ti duy nht mt gi tr z = f (x, y ) R. y ta ni x v y l cc bin s, ta coi z hay f gi l hm ca cc bin (x, y ),v D c gi l min xc nh ca hm f . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 4 / 42 ## Chng 1. Hm s nhiu bin Chng 1. Hm s nhiu bin 1.1. Mt s khi nim chung v hm s nhiu bin 1.1.1. Hm s 2 bin xy dng l thuyt cho hm s thc nhiu bin s ta bt u t cc khi nim i vi hm s 2 bin, vic pht biu cho l thuyt ca hm s nhiu hn 2 bin c tin hnh tng t. a) Cc khi nim Cho D l mt min trong mt phng Oxy , ta ni rng trn D xc nh mt hm s f nu vi mi im M(x, y ) D tn ti duy nht mt gi tr z = f (x, y ) R. y ta ni x v y l cc bin s, ta coi z hay f gi l hm ca cc bin (x, y ),v D c gi l min xc nh ca hm f . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 4 / 42 ## Chng 1. Hm s nhiu bin Chng 1. Hm s nhiu bin 1.1. Mt s khi nim chung v hm s nhiu bin 1.1.1. Hm s 2 bin xy dng l thuyt cho hm s thc nhiu bin s ta bt u t cc khi nim i vi hm s 2 bin, vic pht biu cho l thuyt ca hm s nhiu hn 2 bin c tin hnh tng t. a) Cc khi nim Cho D l mt min trong mt phng Oxy , ta ni rng trn D xc nh mt hm s f nu vi mi im M(x, y ) D tn ti duy nht mt gi tr z = f (x, y ) R. y ta ni x v y l cc bin s, ta coi z hay f gi l hm ca cc bin (x, y ),v D c gi l min xc nh ca hm f . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 4 / 42 ## Chng 1. Hm s nhiu bin Chng 1. Hm s nhiu bin 1.1. Mt s khi nim chung v hm s nhiu bin 1.1.1. Hm s 2 bin xy dng l thuyt cho hm s thc nhiu bin s ta bt u t cc khi nim i vi hm s 2 bin, vic pht biu cho l thuyt ca hm s nhiu hn 2 bin c tin hnh tng t. a) Cc khi nim Cho D l mt min trong mt phng Oxy , ta ni rng trn D xc nh mt hm s f nu vi mi im M(x, y ) D tn ti duy nht mt gi tr z = f (x, y ) R. y ta ni x v y l cc bin s, ta coi z hay f gi l hm ca cc bin (x, y ),v D c gi l min xc nh ca hm f . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 4 / 42 ## Chng 1. Hm s nhiu bin Chng 1. Hm s nhiu bin 1.1. Mt s khi nim chung v hm s nhiu bin 1.1.1. Hm s 2 bin xy dng l thuyt cho hm s thc nhiu bin s ta bt u t cc khi nim i vi hm s 2 bin, vic pht biu cho l thuyt ca hm s nhiu hn 2 bin c tin hnh tng t. a) Cc khi nim Cho D l mt min trong mt phng Oxy , ta ni rng trn D xc nh mt hm s f nu vi mi im M(x, y ) D tn ti duy nht mt gi tr z = f (x, y ) R. y ta ni x v y l cc bin s, ta coi z hay f gi l hm ca cc bin (x, y ),v D c gi l min xc nh ca hm f . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 4 / 42 ## Chng 1. Hm s nhiu bin - Ta gi tp G = {(x, y , f (x, y )) |(x, y ) D} R3 l th ca hm s f .- V mt hnh hc th th ca hm s 2 bin f (x, y ) m t mt mt cong trong khng gian, v min xc nh D l hnh chiu ca tp G xung mt phng Oxy . b) Nhn xt - Thng thng vi hm s 2 bin ta hay coi z l hm cn (x, y ) l bin v vit z = z(x, y ), i khi ta cng c th coi x hay y l cc hm s, tc l x = x(y , z) hay y = y (x, z).- Khi coi x (hoc y ) l hm th min xc nh ca hm s c xt trn mt Oyz (hoc Ozx ) tng ng. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 5 / 42 ## Chng 1. Hm s nhiu bin - Ta gi tp G = {(x, y , f (x, y )) |(x, y ) D} R3 l th ca hm s f .- V mt hnh hc th th ca hm s 2 bin f (x, y ) m t mt mt cong trong khng gian, v min xc nh D l hnh chiu ca tp G xung mt phng Oxy . b) Nhn xt - Thng thng vi hm s 2 bin ta hay coi z l hm cn (x, y ) l bin v vit z = z(x, y ), i khi ta cng c th coi x hay y l cc hm s, tc l x = x(y , z) hay y = y (x, z).- Khi coi x (hoc y ) l hm th min xc nh ca hm s c xt trn mt Oyz (hoc Ozx ) tng ng. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 5 / 42 ## Chng 1. Hm s nhiu bin - Ta gi tp G = {(x, y , f (x, y )) |(x, y ) D} R3 l th ca hm s f .- V mt hnh hc th th ca hm s 2 bin f (x, y ) m t mt mt cong trong khng gian, v min xc nh D l hnh chiu ca tp G xung mt phng Oxy . b) Nhn xt - Thng thng vi hm s 2 bin ta hay coi z l hm cn (x, y ) l bin v vit z = z(x, y ), i khi ta cng c th coi x hay y l cc hm s, tc l x = x(y , z) hay y = y (x, z).- Khi coi x (hoc y ) l hm th min xc nh ca hm s c xt trn mt Oyz (hoc Ozx ) tng ng. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 5 / 42 ## Hm s nhiu bin Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 6 / 42 Mt s mt bc hai thng gp 1.1.2. th ca mt s hm hai bin thng gp a) Mt cu x2 + y 2 + z2 = a2, a > 0 > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 7 / 42 ## Mt s mt bc hai thng gp 1.1.2. th ca mt s hm hai bin thng gp b) Mt Ellipsoid x2 a2 + y 2 b2 + z2 c2 = 1 > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 8 / 42 ## Mt s mt bc hai thng gp 1.1.2. th ca mt s hm hai bin thng gp c) Mt tr x2 + y 2 = R2, c z b > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 9 / 42 ## Mt s mt bc hai thng gp 1.1.2. th ca mt s hm hai bin thng gp d) Mt Paraboloid z = x2 + y 2 > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 10 / 42 ## Mt s mt bc hai thng gp 1.1.2. th ca mt s hm hai bin thng gp e) Mt nn z2 = x2 + y 2 > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 11 / 42 ## Mt s khi nim v hm 2 bin 1.1.3. Tnh lin tc ca hm s hai bin - Trong mt phng cho 2 im M0(x0, y0) v im M(x, y ), khong cch (Euclid) gia M v M0 c xc nh bi (M, M0) = | ~MM 0| = (x0 x)2 + ( y0 y )2. V ta ni im M tin ti M0 (M M0) khi x x0, y y0 nu (M, M0) 0- Ta ni rng hm s f (x, y ) c gii hn bng A khi (x, y ) tin ti (x0, y0) v vit lim > (x,y)(x0,y0) f (x, y ) = A nu vi mi dy (xn, yn) (x0, y0) th dy f (xn, yn) A.- Ta ni hm s f (x, y ) lin tc ti (x0, y0) nu lim > (x,y)(x0,y0) f (x, y ) = f (x0, y0). Nhn xt : Cc hm s s cp lun lin tc trn min xc nh ca n. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 12 / 42 ## Mt s khi nim v hm 2 bin 1.1.3. Tnh lin tc ca hm s hai bin - Trong mt phng cho 2 im M0(x0, y0) v im M(x, y ), khong cch (Euclid) gia M v M0 c xc nh bi (M, M0) = | ~MM 0| = (x0 x)2 + ( y0 y )2. V ta ni im M tin ti M0 (M M0) khi x x0, y y0 nu (M, M0) 0- Ta ni rng hm s f (x, y ) c gii hn bng A khi (x, y ) tin ti (x0, y0) v vit lim > (x,y)(x0,y0) f (x, y ) = A nu vi mi dy (xn, yn) (x0, y0) th dy f (xn, yn) A.- Ta ni hm s f (x, y ) lin tc ti (x0, y0) nu lim > (x,y)(x0,y0) f (x, y ) = f (x0, y0). Nhn xt : Cc hm s s cp lun lin tc trn min xc nh ca n. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 12 / 42 ## Mt s khi nim v hm 2 bin 1.1.3. Tnh lin tc ca hm s hai bin - Trong mt phng cho 2 im M0(x0, y0) v im M(x, y ), khong cch (Euclid) gia M v M0 c xc nh bi (M, M0) = | ~MM 0| = (x0 x)2 + ( y0 y )2. V ta ni im M tin ti M0 (M M0) khi x x0, y y0 nu (M, M0) 0- Ta ni rng hm s f (x, y ) c gii hn bng A khi (x, y ) tin ti (x0, y0) v vit lim > (x,y)(x0,y0) f (x, y ) = A nu vi mi dy (xn, yn) (x0, y0) th dy f (xn, yn) A.- Ta ni hm s f (x, y ) lin tc ti (x0, y0) nu lim > (x,y)(x0,y0) f (x, y ) = f (x0, y0). Nhn xt : Cc hm s s cp lun lin tc trn min xc nh ca n. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 12 / 42 ## Mt s khi nim v hm 2 bin 1.1.3. Tnh lin tc ca hm s hai bin - Trong mt phng cho 2 im M0(x0, y0) v im M(x, y ), khong cch (Euclid) gia M v M0 c xc nh bi (M, M0) = | ~MM 0| = (x0 x)2 + ( y0 y )2. V ta ni im M tin ti M0 (M M0) khi x x0, y y0 nu (M, M0) 0- Ta ni rng hm s f (x, y ) c gii hn bng A khi (x, y ) tin ti (x0, y0) v vit lim > (x,y)(x0,y0) f (x, y ) = A nu vi mi dy (xn, yn) (x0, y0) th dy f (xn, yn) A.- Ta ni hm s f (x, y ) lin tc ti (x0, y0) nu lim > (x,y)(x0,y0) f (x, y ) = f (x0, y0). Nhn xt : Cc hm s s cp lun lin tc trn min xc nh ca n. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 12 / 42 ## Mt s khi nim v hm 2 bin 1.1.3. Tnh lin tc ca hm s hai bin - Trong mt phng cho 2 im M0(x0, y0) v im M(x, y ), khong cch (Euclid) gia M v M0 c xc nh bi (M, M0) = | ~MM 0| = (x0 x)2 + ( y0 y )2. V ta ni im M tin ti M0 (M M0) khi x x0, y y0 nu (M, M0) 0- Ta ni rng hm s f (x, y ) c gii hn bng A khi (x, y ) tin ti (x0, y0) v vit lim > (x,y)(x0,y0) f (x, y ) = A nu vi mi dy (xn, yn) (x0, y0) th dy f (xn, yn) A.- Ta ni hm s f (x, y ) lin tc ti (x0, y0) nu lim > (x,y)(x0,y0) f (x, y ) = f (x0, y0). Nhn xt : Cc hm s s cp lun lin tc trn min xc nh ca n. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 12 / 42 ## o hm v vi phn ca hm nhiu bin 1.2. o hm ring, vi phn ton phn 1.2.1. o hm ring a) Cc khi nim - Cho hm s f (x, y ) xc nh ti im M0(x0, y0) v ln cn ca im M0, khi ta c nh bin y = y0 th hm f (x, y0) = g (x) l hm s ch ph thuc vo bin x.Trong trng hp ny nu tn ti o hm g (x0) th n c gi l o hm ring theo bin x ca hm s f ti im M0, k hiu l f > x (M0) hoc f x (M0).- Theo biu din o hm ca hm 1 bin i vi hm g (x), ta c g (x0) = lim > x0 g (x0 + x) g (x0)x Khi ta c th vit (trong trng hp gii hn v phi tn ti) f > x (x0, y0) = lim > x0 f (x0 + x, y0) f (x0, y0)x > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 13 / 42 ## o hm v vi phn ca hm nhiu bin 1.2. o hm ring, vi phn ton phn 1.2.1. o hm ring a) Cc khi nim - Cho hm s f (x, y ) xc nh ti im M0(x0, y0) v ln cn ca im M0, khi ta c nh bin y = y0 th hm f (x, y0) = g (x) l hm s ch ph thuc vo bin x.Trong trng hp ny nu tn ti o hm g (x0) th n c gi l o hm ring theo bin x ca hm s f ti im M0, k hiu l f > x (M0) hoc f x (M0).- Theo biu din o hm ca hm 1 bin i vi hm g (x), ta c g (x0) = lim > x0 g (x0 + x) g (x0)x Khi ta c th vit (trong trng hp gii hn v phi tn ti) f > x (x0, y0) = lim > x0 f (x0 + x, y0) f (x0, y0)x > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 13 / 42 ## o hm v vi phn ca hm nhiu bin 1.2. o hm ring, vi phn ton phn 1.2.1. o hm ring a) Cc khi nim - Cho hm s f (x, y ) xc nh ti im M0(x0, y0) v ln cn ca im M0, khi ta c nh bin y = y0 th hm f (x, y0) = g (x) l hm s ch ph thuc vo bin x.Trong trng hp ny nu tn ti o hm g (x0) th n c gi l o hm ring theo bin x ca hm s f ti im M0, k hiu l f > x (M0) hoc f x (M0).- Theo biu din o hm ca hm 1 bin i vi hm g (x), ta c g (x0) = lim > x0 g (x0 + x) g (x0)x Khi ta c th vit (trong trng hp gii hn v phi tn ti) f > x (x0, y0) = lim > x0 f (x0 + x, y0) f (x0, y0)x > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 13 / 42 ## o hm v vi phn ca hm nhiu bin Ni mt cch khc f > x = lim > x0 f (x + x, y ) f (x, y )x v f > y = lim > y0 f (x, y + y ) f (x, y )y . b) Nhn xt: + Khi tnh o hm ring ca hm s theo mt bin no ta coi bin cn li nh l hng s. + o hm ring c tnh cht tng t nh o hm ca hm s 1 bin s. V d: Tnh o hm ring ca cc hm s sau: (1)z = x3 3y 2 + 2x2y + x + 2y ; (2) z = xy ; (3) z = ln (x + x2 + y 2)(4) z = arctan yx ; (5) f (x, y , z) = xyz . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 14 / 42 ## o hm v vi phn ca hm nhiu bin Ni mt cch khc f > x = lim > x0 f (x + x, y ) f (x, y )x v f > y = lim > y0 f (x, y + y ) f (x, y )y . b) Nhn xt: + Khi tnh o hm ring ca hm s theo mt bin no ta coi bin cn li nh l hng s. + o hm ring c tnh cht tng t nh o hm ca hm s 1 bin s. V d: Tnh o hm ring ca cc hm s sau: (1)z = x3 3y 2 + 2x2y + x + 2y ; (2) z = xy ; (3) z = ln (x + x2 + y 2)(4) z = arctan yx ; (5) f (x, y , z) = xyz . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 14 / 42 ## o hm v vi phn ca hm nhiu bin Ni mt cch khc f > x = lim > x0 f (x + x, y ) f (x, y )x v f > y = lim > y0 f (x, y + y ) f (x, y )y . b) Nhn xt: + Khi tnh o hm ring ca hm s theo mt bin no ta coi bin cn li nh l hng s. + o hm ring c tnh cht tng t nh o hm ca hm s 1 bin s. V d: Tnh o hm ring ca cc hm s sau: (1)z = x3 3y 2 + 2x2y + x + 2y ; (2) z = xy ; (3) z = ln (x + x2 + y 2)(4) z = arctan yx ; (5) f (x, y , z) = xyz . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 14 / 42 ## o hm v vi phn ca hm nhiu bin Ni mt cch khc f > x = lim > x0 f (x + x, y ) f (x, y )x v f > y = lim > y0 f (x, y + y ) f (x, y )y . b) Nhn xt: + Khi tnh o hm ring ca hm s theo mt bin no ta coi bin cn li nh l hng s. + o hm ring c tnh cht tng t nh o hm ca hm s 1 bin s. V d: Tnh o hm ring ca cc hm s sau: (1)z = x3 3y 2 + 2x2y + x + 2y ; (2) z = xy ; (3) z = ln (x + x2 + y 2)(4) z = arctan yx ; (5) f (x, y , z) = xyz . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 14 / 42 ## o hm v vi phn ca hm nhiu bin Ni mt cch khc f > x = lim > x0 f (x + x, y ) f (x, y )x v f > y = lim > y0 f (x, y + y ) f (x, y )y . b) Nhn xt: + Khi tnh o hm ring ca hm s theo mt bin no ta coi bin cn li nh l hng s. + o hm ring c tnh cht tng t nh o hm ca hm s 1 bin s. V d: Tnh o hm ring ca cc hm s sau: (1)z = x3 3y 2 + 2x2y + x + 2y ; (2) z = xy ; (3) z = ln (x + x2 + y 2)(4) z = arctan yx ; (5) f (x, y , z) = xyz . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 14 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) z = x3 3y 2 + 2x2y + x + 2yz x = 3x2 + 4xy + 1; z y = 6y + 2x2 + 2(2) z = xy z x = yx y 1, z y = xy lnx (3) z = ln (x + x2 + y 2) z x = (x + x2 + y 2) x x + x2 + y 2 = 1 + xx2+y 2 x + x2 + y 2 = 1 x2 + y 2 . z y = (x + x2 + y 2) y x + x2 + y 2 = yx2+y 2 x + x2 + y 2 = y x2 + y 2(x + x2 + y 2) . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 15 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) z = x3 3y 2 + 2x2y + x + 2yz x = 3x2 + 4xy + 1; z y = 6y + 2x2 + 2(2) z = xy z x = yx y 1, z y = xy lnx (3) z = ln (x + x2 + y 2) z x = (x + x2 + y 2) x x + x2 + y 2 = 1 + xx2+y 2 x + x2 + y 2 = 1 x2 + y 2 . z y = (x + x2 + y 2) y x + x2 + y 2 = yx2+y 2 x + x2 + y 2 = y x2 + y 2(x + x2 + y 2) . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 15 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) z = x3 3y 2 + 2x2y + x + 2yz x = 3x2 + 4xy + 1; z y = 6y + 2x2 + 2(2) z = xy z x = yx y 1, z y = xy lnx (3) z = ln (x + x2 + y 2) z x = (x + x2 + y 2) x x + x2 + y 2 = 1 + xx2+y 2 x + x2 + y 2 = 1 x2 + y 2 . z y = (x + x2 + y 2) y x + x2 + y 2 = yx2+y 2 x + x2 + y 2 = y x2 + y 2(x + x2 + y 2) . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 15 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) z = x3 3y 2 + 2x2y + x + 2yz x = 3x2 + 4xy + 1; z y = 6y + 2x2 + 2(2) z = xy z x = yx y 1, z y = xy lnx (3) z = ln (x + x2 + y 2) z x = (x + x2 + y 2) x x + x2 + y 2 = 1 + xx2+y 2 x + x2 + y 2 = 1 x2 + y 2 . z y = (x + x2 + y 2) y x + x2 + y 2 = yx2+y 2 x + x2 + y 2 = y x2 + y 2(x + x2 + y 2) . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 15 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) z = x3 3y 2 + 2x2y + x + 2yz x = 3x2 + 4xy + 1; z y = 6y + 2x2 + 2(2) z = xy z x = yx y 1, z y = xy lnx (3) z = ln (x + x2 + y 2) z x = (x + x2 + y 2) x x + x2 + y 2 = 1 + xx2+y 2 x + x2 + y 2 = 1 x2 + y 2 . z y = (x + x2 + y 2) y x + x2 + y 2 = yx2+y 2 x + x2 + y 2 = y x2 + y 2(x + x2 + y 2) . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 15 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) z = x3 3y 2 + 2x2y + x + 2yz x = 3x2 + 4xy + 1; z y = 6y + 2x2 + 2(2) z = xy z x = yx y 1, z y = xy lnx (3) z = ln (x + x2 + y 2) z x = (x + x2 + y 2) x x + x2 + y 2 = 1 + xx2+y 2 x + x2 + y 2 = 1 x2 + y 2 . z y = (x + x2 + y 2) y x + x2 + y 2 = yx2+y 2 x + x2 + y 2 = y x2 + y 2(x + x2 + y 2) . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 15 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) z = x3 3y 2 + 2x2y + x + 2yz x = 3x2 + 4xy + 1; z y = 6y + 2x2 + 2(2) z = xy z x = yx y 1, z y = xy lnx (3) z = ln (x + x2 + y 2) z x = (x + x2 + y 2) x x + x2 + y 2 = 1 + xx2+y 2 x + x2 + y 2 = 1 x2 + y 2 . z y = (x + x2 + y 2) y x + x2 + y 2 = yx2+y 2 x + x2 + y 2 = y x2 + y 2(x + x2 + y 2) . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 15 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) z = x3 3y 2 + 2x2y + x + 2yz x = 3x2 + 4xy + 1; z y = 6y + 2x2 + 2(2) z = xy z x = yx y 1, z y = xy lnx (3) z = ln (x + x2 + y 2) z x = (x + x2 + y 2) x x + x2 + y 2 = 1 + xx2+y 2 x + x2 + y 2 = 1 x2 + y 2 . z y = (x + x2 + y 2) y x + x2 + y 2 = yx2+y 2 x + x2 + y 2 = y x2 + y 2(x + x2 + y 2) . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 15 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) z = x3 3y 2 + 2x2y + x + 2yz x = 3x2 + 4xy + 1; z y = 6y + 2x2 + 2(2) z = xy z x = yx y 1, z y = xy lnx (3) z = ln (x + x2 + y 2) z x = (x + x2 + y 2) x x + x2 + y 2 = 1 + xx2+y 2 x + x2 + y 2 = 1 x2 + y 2 . z y = (x + x2 + y 2) y x + x2 + y 2 = yx2+y 2 x + x2 + y 2 = y x2 + y 2(x + x2 + y 2) . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 15 / 42 ## o hm v vi phn ca hm nhiu bin (4) z = arctan yxz x = ( yx ) x 1 + ( yx )2 = yx2 1 + y 2 x2 = yx2 + y 2 . z y = ( yx ) y 1 + ( yx )2 = 1 x 1 + y 2 x2 = xx2 + y 2 . (5) f (x, y , z) = xyz f x = yzx yz 1, f y = zx yz lnx , f z = yx yz lnx . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 16 / 42 ## o hm v vi phn ca hm nhiu bin (4) z = arctan yxz x = ( yx ) x 1 + ( yx )2 = yx2 1 + y 2 x2 = yx2 + y 2 . z y = ( yx ) y 1 + ( yx )2 = 1 x 1 + y 2 x2 = xx2 + y 2 . (5) f (x, y , z) = xyz f x = yzx yz 1, f y = zx yz lnx , f z = yx yz lnx . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 16 / 42 ## o hm v vi phn ca hm nhiu bin (4) z = arctan yxz x = ( yx ) x 1 + ( yx )2 = yx2 1 + y 2 x2 = yx2 + y 2 . z y = ( yx ) y 1 + ( yx )2 = 1 x 1 + y 2 x2 = xx2 + y 2 . (5) f (x, y , z) = xyz f x = yzx yz 1, f y = zx yz lnx , f z = yx yz lnx . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 16 / 42 ## o hm v vi phn ca hm nhiu bin 1.2.2. Vi phn ton phn - Cho hm s f (x, y ) xc nh ti im M0(x0, y0) v ln cn ca M0, gi cc s gia ca x, y ti x0, y0 tng ng l x, y . Khi s gia ca f (x, y ) ti M0 l f (x0, y0) = f (x0 + x, y0 + y ) f (x0, y0). Nu ta c th biu din f (x0, y0) = A.x + B.y + . x + . y trong , A, B khng ph thuc vo x, y , cn 0, 0 khi x 0, y 0, th ta ni rng hm s f (x, y ) kh vi ti M0 v i lng (A.x + B.y ) c gi l vi phn ton phn ca hm s f (x, y ) ti M0, k hiu l df (M0). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 17 / 42 ## o hm v vi phn ca hm nhiu bin 1.2.2. Vi phn ton phn - Cho hm s f (x, y ) xc nh ti im M0(x0, y0) v ln cn ca M0, gi cc s gia ca x, y ti x0, y0 tng ng l x, y . Khi s gia ca f (x, y ) ti M0 l f (x0, y0) = f (x0 + x, y0 + y ) f (x0, y0). Nu ta c th biu din f (x0, y0) = A.x + B.y + . x + . y trong , A, B khng ph thuc vo x, y , cn 0, 0 khi x 0, y 0, th ta ni rng hm s f (x, y ) kh vi ti M0 v i lng (A.x + B.y ) c gi l vi phn ton phn ca hm s f (x, y ) ti M0, k hiu l df (M0). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 17 / 42 ## o hm v vi phn ca hm nhiu bin * Mt s nhn xt cho tnh kh vi ca hm s nhiu bin s - Cc hm s s cp lun kh vi trn min xc nh ca n. - Nu hm s f (x, y ) kh vi ti M0(x0, y0) th lin tc ti M0, tuy nhin iu ngc li khng ng. - Nu hm s f (x, y ) c cc o hm ring lin tc ti M0 th kh vi ti M0 v ngc li. Khi ta c th biu din df (M0) = f > x (M0) x + f > y (M0) y . - Khng mt tng qut ta c th biu din cng thc vi phn ton phn ca mt hm s theo cng thc: df (x, y ) = f > x dx + f > y dy , df (x, y , z) = f > x dx + f > y dy + f > z dz , ... > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 18 / 42 ## o hm v vi phn ca hm nhiu bin * Mt s nhn xt cho tnh kh vi ca hm s nhiu bin s - Cc hm s s cp lun kh vi trn min xc nh ca n. - Nu hm s f (x, y ) kh vi ti M0(x0, y0) th lin tc ti M0, tuy nhin iu ngc li khng ng. - Nu hm s f (x, y ) c cc o hm ring lin tc ti M0 th kh vi ti M0 v ngc li. Khi ta c th biu din df (M0) = f > x (M0) x + f > y (M0) y . - Khng mt tng qut ta c th biu din cng thc vi phn ton phn ca mt hm s theo cng thc: df (x, y ) = f > x dx + f > y dy , df (x, y , z) = f > x dx + f > y dy + f > z dz , ... > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 18 / 42 ## o hm v vi phn ca hm nhiu bin * Mt s nhn xt cho tnh kh vi ca hm s nhiu bin s - Cc hm s s cp lun kh vi trn min xc nh ca n. - Nu hm s f (x, y ) kh vi ti M0(x0, y0) th lin tc ti M0, tuy nhin iu ngc li khng ng. - Nu hm s f (x, y ) c cc o hm ring lin tc ti M0 th kh vi ti M0 v ngc li. Khi ta c th biu din df (M0) = f > x (M0) x + f > y (M0) y . - Khng mt tng qut ta c th biu din cng thc vi phn ton phn ca mt hm s theo cng thc: df (x, y ) = f > x dx + f > y dy , df (x, y , z) = f > x dx + f > y dy + f > z dz , ... > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 18 / 42 ## o hm v vi phn ca hm nhiu bin * Mt s nhn xt cho tnh kh vi ca hm s nhiu bin s - Cc hm s s cp lun kh vi trn min xc nh ca n. - Nu hm s f (x, y ) kh vi ti M0(x0, y0) th lin tc ti M0, tuy nhin iu ngc li khng ng. - Nu hm s f (x, y ) c cc o hm ring lin tc ti M0 th kh vi ti M0 v ngc li. Khi ta c th biu din df (M0) = f > x (M0) x + f > y (M0) y . - Khng mt tng qut ta c th biu din cng thc vi phn ton phn ca mt hm s theo cng thc: df (x, y ) = f > x dx + f > y dy , df (x, y , z) = f > x dx + f > y dy + f > z dz , ... > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 18 / 42 ## o hm v vi phn ca hm nhiu bin * Mt s nhn xt cho tnh kh vi ca hm s nhiu bin s - Cc hm s s cp lun kh vi trn min xc nh ca n. - Nu hm s f (x, y ) kh vi ti M0(x0, y0) th lin tc ti M0, tuy nhin iu ngc li khng ng. - Nu hm s f (x, y ) c cc o hm ring lin tc ti M0 th kh vi ti M0 v ngc li. Khi ta c th biu din df (M0) = f > x (M0) x + f > y (M0) y . - Khng mt tng qut ta c th biu din cng thc vi phn ton phn ca mt hm s theo cng thc: df (x, y ) = f > x dx + f > y dy , df (x, y , z) = f > x dx + f > y dy + f > z dz , ... > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 18 / 42 ## o hm v vi phn ca hm nhiu bin Cng thc tnh gn ng theo vi phn Gi s f (x, y ) l mt hm s kh vi ti M0(x0, y0), khi vi x v y kh b ta c th xp x f (x0 + x, y0 + y ) f (M0) + f > x (M0) x + f > y (M0) y Tng t cho hm s 3 bin vi M0(x0, y0, z0) v vi x, y , z kh b ta c f (x0 + x, y0 + y , z0 + z) f (M0) + f > x (M0) x + f > y (M0) y + f > z (M0) z V d: Dng vi phn tnh gn ng gi tr ca biu thc (1) A = 1, 98 4 + 3, 03 2 (2) B = ln (1, 03 + 3 0, 99 1) > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 19 / 42 ## o hm v vi phn ca hm nhiu bin Cng thc tnh gn ng theo vi phn Gi s f (x, y ) l mt hm s kh vi ti M0(x0, y0), khi vi x v y kh b ta c th xp x f (x0 + x, y0 + y ) f (M0) + f > x (M0) x + f > y (M0) y Tng t cho hm s 3 bin vi M0(x0, y0, z0) v vi x, y , z kh b ta c f (x0 + x, y0 + y , z0 + z) f (M0) + f > x (M0) x + f > y (M0) y + f > z (M0) z V d: Dng vi phn tnh gn ng gi tr ca biu thc (1) A = 1, 98 4 + 3, 03 2 (2) B = ln (1, 03 + 3 0, 99 1) > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 19 / 42 ## o hm v vi phn ca hm nhiu bin Cng thc tnh gn ng theo vi phn Gi s f (x, y ) l mt hm s kh vi ti M0(x0, y0), khi vi x v y kh b ta c th xp x f (x0 + x, y0 + y ) f (M0) + f > x (M0) x + f > y (M0) y Tng t cho hm s 3 bin vi M0(x0, y0, z0) v vi x, y , z kh b ta c f (x0 + x, y0 + y , z0 + z) f (M0) + f > x (M0) x + f > y (M0) y + f > z (M0) z V d: Dng vi phn tnh gn ng gi tr ca biu thc (1) A = 1, 98 4 + 3, 03 2 (2) B = ln (1, 03 + 3 0, 99 1) > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 19 / 42 ## o hm v vi phn ca hm nhiu bin Gii. (1) Xt hm s f (x, y ) = x4 + y 2. Chn M0(2, 3), khi x = 0, 02 , y = 0, 03, f (M0) = 24 + 32 = 5. f x = 2x3 x4 + y 2 , f x (M0) = 16 5 f y = y x4 + y 2 , f y (M0) = 35Khi A 5 + 16 5 .(0, 02 ) + 35 .0, 03 = 4, 954 (2) Xt hm s f (x, y ) = ln (x + 3 y 1). Chn M0(1, 1), khi x = 0, 03 , y = 0, 01, f (M0) = ln (1 + 3 1 1) = 0 (sv t lm tip). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 20 / 42 ## o hm v vi phn ca hm nhiu bin Gii. (1) Xt hm s f (x, y ) = x4 + y 2. Chn M0(2, 3), khi x = 0, 02 , y = 0, 03, f (M0) = 24 + 32 = 5. f x = 2x3 x4 + y 2 , f x (M0) = 16 5 f y = y x4 + y 2 , f y (M0) = 35Khi A 5 + 16 5 .(0, 02 ) + 35 .0, 03 = 4, 954 (2) Xt hm s f (x, y ) = ln (x + 3 y 1). Chn M0(1, 1), khi x = 0, 03 , y = 0, 01, f (M0) = ln (1 + 3 1 1) = 0 (sv t lm tip). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 20 / 42 ## o hm v vi phn ca hm nhiu bin 1.2.3. o hm ring ca hm hp a) Gi s z = f (u), vi u = u(x, y ). Khi z x = f (u).u x z y = f (u).u y . b) Gi s z = f (x, y ), vi x = x(t), y = y (t). Khi z(t) = f x .x(t) + f y .y (t). c) Gi s z = f (u, v ), vi u = u(x, y ), v = v (x, y ). Khi z x = f u .u x + f v .v x z y = f u .u y + f v .v y . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 21 / 42 ## o hm v vi phn ca hm nhiu bin 1.2.3. o hm ring ca hm hp a) Gi s z = f (u), vi u = u(x, y ). Khi z x = f (u).u x z y = f (u).u y . b) Gi s z = f (x, y ), vi x = x(t), y = y (t). Khi z(t) = f x .x(t) + f y .y (t). c) Gi s z = f (u, v ), vi u = u(x, y ), v = v (x, y ). Khi z x = f u .u x + f v .v x z y = f u .u y + f v .v y . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 21 / 42 ## o hm v vi phn ca hm nhiu bin 1.2.3. o hm ring ca hm hp a) Gi s z = f (u), vi u = u(x, y ). Khi z x = f (u).u x z y = f (u).u y . b) Gi s z = f (x, y ), vi x = x(t), y = y (t). Khi z(t) = f x .x(t) + f y .y (t). c) Gi s z = f (u, v ), vi u = u(x, y ), v = v (x, y ). Khi z x = f u .u x + f v .v x z y = f u .u y + f v .v y . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 21 / 42 ## o hm v vi phn ca hm nhiu bin V d 1. Cho z = f (x2 y 2), vi f l hm s kh vi. Hy rt gn biu thc A = y .z x + x.z y . Gii. t u = x2 y 2. Khi ta c z = f (u), v z x = f (u).u x = f (u).2xz y = f (u).u y = f (u).(2y ), thay vo biu thc ta c A = y .f (u).2x + x.f (u).(2y ) = 0. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 22 / 42 ## o hm v vi phn ca hm nhiu bin V d 1. Cho z = f (x2 y 2), vi f l hm s kh vi. Hy rt gn biu thc A = y .z x + x.z y . Gii. t u = x2 y 2. Khi ta c z = f (u), v z x = f (u).u x = f (u).2xz y = f (u).u y = f (u).(2y ), thay vo biu thc ta c A = y .f (u).2x + x.f (u).(2y ) = 0. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 22 / 42 ## o hm v vi phn ca hm nhiu bin V d 1. Cho z = f (x2 y 2), vi f l hm s kh vi. Hy rt gn biu thc A = y .z x + x.z y . Gii. t u = x2 y 2. Khi ta c z = f (u), v z x = f (u).u x = f (u).2xz y = f (u).u y = f (u).(2y ), thay vo biu thc ta c A = y .f (u).2x + x.f (u).(2y ) = 0. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 22 / 42 ## o hm v vi phn ca hm nhiu bin V d 2. Cho z = ln (3x + 2y + 1), vi x = et , y = sint . Hy tnh z x , z y , dz dt . Gii. Ta c: z x = (3x + 2y + 1) x 3x + 2y + 1 = 33x + 2y + 1 z y = 23x + 2y + 1 dz dt = ( ln (3et + 2sint + 1)) = 3et + 2cost 3et + 2sint + 1 . V d 3. Cho z = ln (u2 + v 2), vi u = xy , v = ex+y . Hy tnh z x , z y .(Sinh vin t gii) > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 23 / 42 ## o hm v vi phn ca hm nhiu bin V d 2. Cho z = ln (3x + 2y + 1), vi x = et , y = sint . Hy tnh z x , z y , dz dt . Gii. Ta c: z x = (3x + 2y + 1) x 3x + 2y + 1 = 33x + 2y + 1 z y = 23x + 2y + 1 dz dt = ( ln (3et + 2sint + 1)) = 3et + 2cost 3et + 2sint + 1 . V d 3. Cho z = ln (u2 + v 2), vi u = xy , v = ex+y . Hy tnh z x , z y .(Sinh vin t gii) > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 23 / 42 ## o hm v vi phn ca hm nhiu bin V d 2. Cho z = ln (3x + 2y + 1), vi x = et , y = sint . Hy tnh z x , z y , dz dt . Gii. Ta c: z x = (3x + 2y + 1) x 3x + 2y + 1 = 33x + 2y + 1 z y = 23x + 2y + 1 dz dt = ( ln (3et + 2sint + 1)) = 3et + 2cost 3et + 2sint + 1 . V d 3. Cho z = ln (u2 + v 2), vi u = xy , v = ex+y . Hy tnh z x , z y .(Sinh vin t gii) > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 23 / 42 ## o hm v vi phn ca hm nhiu bin 1.2.4. o hm ring ca hm n a) Gi s y = y (x) l hm s (n) c cho bi phng trnh F (x, y ) = 0. () By gi ta o hm 2 v ca phng trnh () theo bin x ta c F x .1 + F y .y (x) = 0. Khi y (x) = F x F y . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 24 / 42 ## o hm v vi phn ca hm nhiu bin 1.2.4. o hm ring ca hm n a) Gi s y = y (x) l hm s (n) c cho bi phng trnh F (x, y ) = 0. () By gi ta o hm 2 v ca phng trnh () theo bin x ta c F x .1 + F y .y (x) = 0. Khi y (x) = F x F y . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 24 / 42 ## o hm v vi phn ca hm nhiu bin 1.2.4. o hm ring ca hm n a) Gi s y = y (x) l hm s (n) c cho bi phng trnh F (x, y ) = 0. () By gi ta o hm 2 v ca phng trnh () theo bin x ta c F x .1 + F y .y (x) = 0. Khi y (x) = F x F y . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 24 / 42 ## o hm v vi phn ca hm nhiu bin b) Gi s z = z(x, y ) l hm s xc nh bi phng trnh F (x, y , z) = 0bng cch lm tng t ta thu c z > x = F > x F > z , z > y = F > y F > z . V d. (1) Tnh y (x) bit rng y = y (x) l hm xc nh bi phng trnh xe y + ye x = 1. T tnh y (0) bit rng y (0) = 1. (2) Tnh dz bit rng z = z(x, y ) xc nh bi phng trnh x3 + y 3 + z3 = 3xyz . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 25 / 42 ## o hm v vi phn ca hm nhiu bin b) Gi s z = z(x, y ) l hm s xc nh bi phng trnh F (x, y , z) = 0bng cch lm tng t ta thu c z > x = F > x F > z , z > y = F > y F > z . V d. (1) Tnh y (x) bit rng y = y (x) l hm xc nh bi phng trnh xe y + ye x = 1. T tnh y (0) bit rng y (0) = 1. (2) Tnh dz bit rng z = z(x, y ) xc nh bi phng trnh x3 + y 3 + z3 = 3xyz . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 25 / 42 ## o hm v vi phn ca hm nhiu bin b) Gi s z = z(x, y ) l hm s xc nh bi phng trnh F (x, y , z) = 0bng cch lm tng t ta thu c z > x = F > x F > z , z > y = F > y F > z . V d. (1) Tnh y (x) bit rng y = y (x) l hm xc nh bi phng trnh xe y + ye x = 1. T tnh y (0) bit rng y (0) = 1. (2) Tnh dz bit rng z = z(x, y ) xc nh bi phng trnh x3 + y 3 + z3 = 3xyz . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 25 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) Xt hm s F (x, y ) = xe y + ye x 1 = 0. Ta c: F x = ey + ye x , F y = xe y + ex . Khi y (x) = F x F y = ey + ye x xe y + ex v y (0) = e + 11 = (e + 1). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 26 / 42 ## o hm v vi phn ca hm nhiu bin Gii: (1) Xt hm s F (x, y ) = xe y + ye x 1 = 0. Ta c: F x = ey + ye x , F y = xe y + ex . Khi y (x) = F x F y = ey + ye x xe y + ex v y (0) = e + 11 = (e + 1). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 26 / 42 ## o hm v vi phn ca hm nhiu bin (2) Xt hm s F (x, y , z) = x3 + y 3 + z3 3xyz = 0. Ta c: F x = 3x2 3yz , F y = 3y 2 3xz , F z = 3z2 3xy . Khi z x = F x F z = 3x2 3yz 3z2 3xy , z y = F y F z = 3y 2 3xz 3z2 3xy dz = z x dx + z y dy = 3yz 3x2 3z2 3xy dx + 3xz 3y 2 3z2 3xy dy . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 27 / 42 ## o hm v vi phn ca hm nhiu bin (2) Xt hm s F (x, y , z) = x3 + y 3 + z3 3xyz = 0. Ta c: F x = 3x2 3yz , F y = 3y 2 3xz , F z = 3z2 3xy . Khi z x = F x F z = 3x2 3yz 3z2 3xy , z y = F y F z = 3y 2 3xz 3z2 3xy dz = z x dx + z y dy = 3yz 3x2 3z2 3xy dx + 3xz 3y 2 3z2 3xy dy . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 27 / 42 ## o hm v vi phn ca hm nhiu bin (2) Xt hm s F (x, y , z) = x3 + y 3 + z3 3xyz = 0. Ta c: F x = 3x2 3yz , F y = 3y 2 3xz , F z = 3z2 3xy . Khi z x = F x F z = 3x2 3yz 3z2 3xy , z y = F y F z = 3y 2 3xz 3z2 3xy dz = z x dx + z y dy = 3yz 3x2 3z2 3xy dx + 3xz 3y 2 3z2 3xy dy . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 27 / 42 ## o hm ring v vi phn cp cao 1.3. o hm ring v vi phn cp cao 1.3.1. o hm ring cp cao a) Cc khi nim Gi s hm s f (x, y ) c cc o hm ring f > x , f > y , cc o hm ring ca f > x v f > y (nu c) c gi l cc o hm ring cp 2 ca hm s f (x, y ), k hiu v c tnh tng ng nh sau: f > xx = ( f > x ) > x , f > xy = ( f > x ) > y f > yx = ( f > y ) > x , f > yy = ( f > y ) > y b) Nhn xt (nh l Schwaz) . Nu hm s f (x, y ) c cc o hm ring cp hai f > xy v f > yx lin tc ti M0(x0, y0) th f > xy (M0) = f > yx (M0). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 28 / 42 ## o hm ring v vi phn cp cao 1.3. o hm ring v vi phn cp cao 1.3.1. o hm ring cp cao a) Cc khi nim Gi s hm s f (x, y ) c cc o hm ring f > x , f > y , cc o hm ring ca f > x v f > y (nu c) c gi l cc o hm ring cp 2 ca hm s f (x, y ), k hiu v c tnh tng ng nh sau: f > xx = ( f > x ) > x , f > xy = ( f > x ) > y f > yx = ( f > y ) > x , f > yy = ( f > y ) > y b) Nhn xt (nh l Schwaz) . Nu hm s f (x, y ) c cc o hm ring cp hai f > xy v f > yx lin tc ti M0(x0, y0) th f > xy (M0) = f > yx (M0). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 28 / 42 ## o hm ring v vi phn cp cao 1.3. o hm ring v vi phn cp cao 1.3.1. o hm ring cp cao a) Cc khi nim Gi s hm s f (x, y ) c cc o hm ring f > x , f > y , cc o hm ring ca f > x v f > y (nu c) c gi l cc o hm ring cp 2 ca hm s f (x, y ), k hiu v c tnh tng ng nh sau: f > xx = ( f > x ) > x , f > xy = ( f > x ) > y f > yx = ( f > y ) > x , f > yy = ( f > y ) > y b) Nhn xt (nh l Schwaz) . Nu hm s f (x, y ) c cc o hm ring cp hai f > xy v f > yx lin tc ti M0(x0, y0) th f > xy (M0) = f > yx (M0). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 28 / 42 ## o hm ring v vi phn cp cao T nhn xt trn ta thy, vic tnh o hm ring cp cao ca hm s nhiu bin khng ph thuc vo th t ly o hm ring ca hm s theo bin s, iu ny gip chng ta gim bt rt nhiu trong vic tnh o hm ring cp cao ca hm s c nhiu bin s. V d. (1) Tnh cc o hm ring cp 2 ca hm s sau f (x, y ) = xsin (x2 + 3y ) + ln (x + 2y ) (2) Cho hm s u = x2 + y 2 + z2 Chng minh rng u > xx + u > yy + u > zz = 2 u . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 29 / 42 ## o hm ring v vi phn cp cao T nhn xt trn ta thy, vic tnh o hm ring cp cao ca hm s nhiu bin khng ph thuc vo th t ly o hm ring ca hm s theo bin s, iu ny gip chng ta gim bt rt nhiu trong vic tnh o hm ring cp cao ca hm s c nhiu bin s. V d. (1) Tnh cc o hm ring cp 2 ca hm s sau f (x, y ) = xsin (x2 + 3y ) + ln (x + 2y ) (2) Cho hm s u = x2 + y 2 + z2 Chng minh rng u > xx + u > yy + u > zz = 2 u . > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 29 / 42 ## o hm ring v vi phn cp cao Gii: (1) Ta c f (x, y ) = xsin (x2 + 3y ) + ln (x + 2y ). Vy f x = sin (x2 + 3y ) + 2x2cos (x2 + 3y ) + 1 x + 2y , f y = 3xcos (x2 + 3y ) + 2 x + 2y v f xx = 6xcos (x2 + 3y ) 4x3sin (x2 + 3y ) 1 (x + 2y )2 f xy = f yx = 3cos (x2 + 3y ) 6x2sin (x2 + 3y ) 2 (x + 2y )2 f yy = 9xsin (x2 + 3y ) 4 (x + 2y )2 . (2) (Sinh vin t gii) > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 30 / 42 ## o hm ring v vi phn cp cao Gii: (1) Ta c f (x, y ) = xsin (x2 + 3y ) + ln (x + 2y ). Vy f x = sin (x2 + 3y ) + 2x2cos (x2 + 3y ) + 1 x + 2y , f y = 3xcos (x2 + 3y ) + 2 x + 2y v f xx = 6xcos (x2 + 3y ) 4x3sin (x2 + 3y ) 1 (x + 2y )2 f xy = f yx = 3cos (x2 + 3y ) 6x2sin (x2 + 3y ) 2 (x + 2y )2 f yy = 9xsin (x2 + 3y ) 4 (x + 2y )2 . (2) (Sinh vin t gii) > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 30 / 42 ## o hm ring v vi phn cp cao Gii: (1) Ta c f (x, y ) = xsin (x2 + 3y ) + ln (x + 2y ). Vy f x = sin (x2 + 3y ) + 2x2cos (x2 + 3y ) + 1 x + 2y , f y = 3xcos (x2 + 3y ) + 2 x + 2y v f xx = 6xcos (x2 + 3y ) 4x3sin (x2 + 3y ) 1 (x + 2y )2 f xy = f yx = 3cos (x2 + 3y ) 6x2sin (x2 + 3y ) 2 (x + 2y )2 f yy = 9xsin (x2 + 3y ) 4 (x + 2y )2 . (2) (Sinh vin t gii) > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 30 / 42 ## o hm ring v vi phn cp cao 1.3.2. Vi phn cp cao i vi hm s hai bin f (x, y ) ta c th biu din cng thc vi phn cp cao theo quy np nh sau: df = f x dx + f y dy = f x dx + f y dy = ( x dx + y dy )1 fd2f = f xx dx 2 + 2f xy dxdy + f yy dy 2 = ( x dx + y dy )2 f dnf = ( x dx + y dy )n f > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 31 / 42 ## o hm ring v vi phn cp cao 1.3.2. Vi phn cp cao i vi hm s hai bin f (x, y ) ta c th biu din cng thc vi phn cp cao theo quy np nh sau: df = f x dx + f y dy = f x dx + f y dy = ( x dx + y dy )1 fd2f = f xx dx 2 + 2f xy dxdy + f yy dy 2 = ( x dx + y dy )2 f dnf = ( x dx + y dy )n f > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 31 / 42 ## o hm ring v vi phn cp cao 1.3.2. Vi phn cp cao i vi hm s hai bin f (x, y ) ta c th biu din cng thc vi phn cp cao theo quy np nh sau: df = f x dx + f y dy = f x dx + f y dy = ( x dx + y dy )1 fd2f = f xx dx 2 + 2f xy dxdy + f yy dy 2 = ( x dx + y dy )2 f dnf = ( x dx + y dy )n f > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 31 / 42 ## o hm ring v vi phn cp cao 1.3.2. Vi phn cp cao i vi hm s hai bin f (x, y ) ta c th biu din cng thc vi phn cp cao theo quy np nh sau: df = f x dx + f y dy = f x dx + f y dy = ( x dx + y dy )1 fd2f = f xx dx 2 + 2f xy dxdy + f yy dy 2 = ( x dx + y dy )2 f dnf = ( x dx + y dy )n f > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 31 / 42 ## o hm ring v vi phn cp cao V d. Tm d2z bit z = sin (x + 2y ) Gii: Ta c z x = cos (x + 2y ), z y = 2cos (x + 2y ) z xx = sin (x + 2y ), z xy = 2sin (x + 2y ), z yy = 4sin (x + 2y ). Do d2z = z xx dx 2 + 2z xy dxdy + z yy dy 2 = sin (x + 2y )dx 2 4sin (x + 2y )dxdy 4sin (x + 2y )dy 2 > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 32 / 42 1.4. Cc tr ca hm nhiu bin s 1.4.1. Cc tr khng rng buc (Cc tr t do) a) Cc khi nim - Cho hm s f (x, y ) xc nh ti im M0(x0, y0) v ln cn ca M0.Ta ni f (x, y ) t cc i ti M0 nu tn ti mt ln cn U ca M0 sao cho f (x, y ) f (x0, y0), (x, y ) U.Ta ni f (x, y ) t cc tiu ti M0 nu tn ti mt ln cn U ca M0 sao cho f (x, y ) f (x0, y0), (x, y ) U.Ti nhng im M0 m hm s f (x, y ) t cc i hay cc tiu ti c gi chung l nhng im cc tr ca hm s. - Nhng im M0 m ti cc o hm ring ca f (x, y ) trit tiu, tc { f > x (M0) = 0 f > y (M0) = 0hoc t nht 1 trong cc o hm ring ca hm s khng tn ti c gi l im dng (im ti hn) ca hm s. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 33 / 42 1.4. Cc tr ca hm nhiu bin s 1.4.1. Cc tr khng rng buc (Cc tr t do) a) Cc khi nim - Cho hm s f (x, y ) xc nh ti im M0(x0, y0) v ln cn ca M0.Ta ni f (x, y ) t cc i ti M0 nu tn ti mt ln cn U ca M0 sao cho f (x, y ) f (x0, y0), (x, y ) U.Ta ni f (x, y ) t cc tiu ti M0 nu tn ti mt ln cn U ca M0 sao cho f (x, y ) f (x0, y0), (x, y ) U.Ti nhng im M0 m hm s f (x, y ) t cc i hay cc tiu ti c gi chung l nhng im cc tr ca hm s. - Nhng im M0 m ti cc o hm ring ca f (x, y ) trit tiu, tc { f > x (M0) = 0 f > y (M0) = 0hoc t nht 1 trong cc o hm ring ca hm s khng tn ti c gi l im dng (im ti hn) ca hm s. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 33 / 42 1.4. Cc tr ca hm nhiu bin s 1.4.1. Cc tr khng rng buc (Cc tr t do) a) Cc khi nim - Cho hm s f (x, y ) xc nh ti im M0(x0, y0) v ln cn ca M0.Ta ni f (x, y ) t cc i ti M0 nu tn ti mt ln cn U ca M0 sao cho f (x, y ) f (x0, y0), (x, y ) U.Ta ni f (x, y ) t cc tiu ti M0 nu tn ti mt ln cn U ca M0 sao cho f (x, y ) f (x0, y0), (x, y ) U.Ti nhng im M0 m hm s f (x, y ) t cc i hay cc tiu ti c gi chung l nhng im cc tr ca hm s. - Nhng im M0 m ti cc o hm ring ca f (x, y ) trit tiu, tc { f > x (M0) = 0 f > y (M0) = 0hoc t nht 1 trong cc o hm ring ca hm s khng tn ti c gi l im dng (im ti hn) ca hm s. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 33 / 42 1.4. Cc tr ca hm nhiu bin s 1.4.1. Cc tr khng rng buc (Cc tr t do) a) Cc khi nim - Cho hm s f (x, y ) xc nh ti im M0(x0, y0) v ln cn ca M0.Ta ni f (x, y ) t cc i ti M0 nu tn ti mt ln cn U ca M0 sao cho f (x, y ) f (x0, y0), (x, y ) U.Ta ni f (x, y ) t cc tiu ti M0 nu tn ti mt ln cn U ca M0 sao cho f (x, y ) f (x0, y0), (x, y ) U.Ti nhng im M0 m hm s f (x, y ) t cc i hay cc tiu ti c gi chung l nhng im cc tr ca hm s. - Nhng im M0 m ti cc o hm ring ca f (x, y ) trit tiu, tc { f > x (M0) = 0 f > y (M0) = 0hoc t nht 1 trong cc o hm ring ca hm s khng tn ti c gi l im dng (im ti hn) ca hm s. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 33 / 42 1.4. Cc tr ca hm nhiu bin s 1.4.1. Cc tr khng rng buc (Cc tr t do) a) Cc khi nim - Cho hm s f (x, y ) xc nh ti im M0(x0, y0) v ln cn ca M0.Ta ni f (x, y ) t cc i ti M0 nu tn ti mt ln cn U ca M0 sao cho f (x, y ) f (x0, y0), (x, y ) U.Ta ni f (x, y ) t cc tiu ti M0 nu tn ti mt ln cn U ca M0 sao cho f (x, y ) f (x0, y0), (x, y ) U.Ti nhng im M0 m hm s f (x, y ) t cc i hay cc tiu ti c gi chung l nhng im cc tr ca hm s. - Nhng im M0 m ti cc o hm ring ca f (x, y ) trit tiu, tc { f > x (M0) = 0 f > y (M0) = 0hoc t nht 1 trong cc o hm ring ca hm s khng tn ti c gi l im dng (im ti hn) ca hm s. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 33 / 42 ## Cc tr ca hm s nhiu bin s Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 34 / 42 Cc tr ca hm s nhiu bin s b) iu kin cn hm s c cc tr nh l : Nu hm s f (x, y ) t cc tr ti im M0(x0, y0) th im M0 phi l im dng ca hm s. Nhn xt :- iu ngc li ca nh l khng ng - Cc im cc tr ca hm s ch c th nm trong cc im dng. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 35 / 42 ## Cc tr ca hm s nhiu bin s b) iu kin cn hm s c cc tr nh l : Nu hm s f (x, y ) t cc tr ti im M0(x0, y0) th im M0 phi l im dng ca hm s. Nhn xt :- iu ngc li ca nh l khng ng - Cc im cc tr ca hm s ch c th nm trong cc im dng. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 35 / 42 ## Cc tr ca hm s nhiu bin s b) iu kin cn hm s c cc tr nh l : Nu hm s f (x, y ) t cc tr ti im M0(x0, y0) th im M0 phi l im dng ca hm s. Nhn xt :- iu ngc li ca nh l khng ng - Cc im cc tr ca hm s ch c th nm trong cc im dng. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 35 / 42 ## Cc tr ca hm s nhiu bin s c) iu kin hm s c cc tr Gi s ti im M0(x0, y0) ta c { f > x (M0) = 0 f > y (M0) = 0. t A = f > xx (M0), B = f > xy (M0), C = f > yy (M0). Khi : - Nu { B2 AC < 0 A > 0 th im M0 l im t cc tiu ca hm s. - Nu { B2 AC < 0 A < 0 th im M0 l im t cc i ca hm s. - Nu B2 AC > 0 th M0 khng l im t cc tr ca hm s. - Nu B2 AC = 0 trong trng hp ny ta cha th kt lun, cn phi xt thm. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 36 / 42 ## Cc tr ca hm s nhiu bin s c) iu kin hm s c cc tr Gi s ti im M0(x0, y0) ta c { f > x (M0) = 0 f > y (M0) = 0. t A = f > xx (M0), B = f > xy (M0), C = f > yy (M0). Khi : - Nu { B2 AC < 0 A > 0 th im M0 l im t cc tiu ca hm s. - Nu { B2 AC < 0 A < 0 th im M0 l im t cc i ca hm s. - Nu B2 AC > 0 th M0 khng l im t cc tr ca hm s. - Nu B2 AC = 0 trong trng hp ny ta cha th kt lun, cn phi xt thm. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 36 / 42 ## Cc tr ca hm s nhiu bin s c) iu kin hm s c cc tr Gi s ti im M0(x0, y0) ta c { f > x (M0) = 0 f > y (M0) = 0. t A = f > xx (M0), B = f > xy (M0), C = f > yy (M0). Khi : - Nu { B2 AC < 0 A > 0 th im M0 l im t cc tiu ca hm s. - Nu { B2 AC < 0 A < 0 th im M0 l im t cc i ca hm s. - Nu B2 AC > 0 th M0 khng l im t cc tr ca hm s. - Nu B2 AC = 0 trong trng hp ny ta cha th kt lun, cn phi xt thm. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 36 / 42 ## Cc tr ca hm s nhiu bin s c) iu kin hm s c cc tr Gi s ti im M0(x0, y0) ta c { f > x (M0) = 0 f > y (M0) = 0. t A = f > xx (M0), B = f > xy (M0), C = f > yy (M0). Khi : - Nu { B2 AC < 0 A > 0 th im M0 l im t cc tiu ca hm s. - Nu { B2 AC < 0 A < 0 th im M0 l im t cc i ca hm s. - Nu B2 AC > 0 th M0 khng l im t cc tr ca hm s. - Nu B2 AC = 0 trong trng hp ny ta cha th kt lun, cn phi xt thm. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 36 / 42 ## Cc tr ca hm s nhiu bin V d 1. Tm cc tr ca hm s f (x, y ) = x3 + y 3 3xy + 2020. Gii: Ta c f x = 3x2 3y , f y = 3y 2 3x, f xx = 6x, f xy = 3, f yy = 6y . Gii h { f x = 0 f y = 0 { 3x2 3y = 03y 2 3x = 0 { x = 0 y = 0 { x = 1 y = 1 . Vy hm s c 2 im dng l: M1(0, 0), M2(1, 1). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 37 / 42 ## Cc tr ca hm s nhiu bin V d 1. Tm cc tr ca hm s f (x, y ) = x3 + y 3 3xy + 2020. Gii: Ta c f x = 3x2 3y , f y = 3y 2 3x, f xx = 6x, f xy = 3, f yy = 6y . Gii h { f x = 0 f y = 0 { 3x2 3y = 03y 2 3x = 0 { x = 0 y = 0 { x = 1 y = 1 . Vy hm s c 2 im dng l: M1(0, 0), M2(1, 1). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 37 / 42 ## Cc tr ca hm s nhiu bin V d 1. Tm cc tr ca hm s f (x, y ) = x3 + y 3 3xy + 2020. Gii: Ta c f x = 3x2 3y , f y = 3y 2 3x, f xx = 6x, f xy = 3, f yy = 6y . Gii h { f x = 0 f y = 0 { 3x2 3y = 03y 2 3x = 0 { x = 0 y = 0 { x = 1 y = 1 . Vy hm s c 2 im dng l: M1(0, 0), M2(1, 1). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 37 / 42 ## Cc tr ca hm s nhiu bin - Ti M1(0, 0), ta c A = 0, B = 3, C = 0. B2 AC = 9 > 0, vy M1 khng l im t cc tr. - Ti M2(1, 1), ta c A = 6, B = 3, C = 6. B2 AC = 27 < 0, A = 6 > 0, vy M2 l im t cc tiu ca hm s, v fCT = f (1, 1) = 2019. V d 2. Tm cc tr ca hm s f (x, y ) = x2 + 4y 2 2 ln( xy ) Gii: > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 38 / 42 ## Cc tr ca hm s nhiu bin - Ti M1(0, 0), ta c A = 0, B = 3, C = 0. B2 AC = 9 > 0, vy M1 khng l im t cc tr. - Ti M2(1, 1), ta c A = 6, B = 3, C = 6. B2 AC = 27 < 0, A = 6 > 0, vy M2 l im t cc tiu ca hm s, v fCT = f (1, 1) = 2019. V d 2. Tm cc tr ca hm s f (x, y ) = x2 + 4y 2 2 ln( xy ) Gii: > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 38 / 42 ## Cc tr ca hm s nhiu bin - Ti M1(0, 0), ta c A = 0, B = 3, C = 0. B2 AC = 9 > 0, vy M1 khng l im t cc tr. - Ti M2(1, 1), ta c A = 6, B = 3, C = 6. B2 AC = 27 < 0, A = 6 > 0, vy M2 l im t cc tiu ca hm s, v fCT = f (1, 1) = 2019. V d 2. Tm cc tr ca hm s f (x, y ) = x2 + 4y 2 2 ln( xy ) Gii: > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 38 / 42 ## Cc tr ca hm s nhiu bin - Ti M1(0, 0), ta c A = 0, B = 3, C = 0. B2 AC = 9 > 0, vy M1 khng l im t cc tr. - Ti M2(1, 1), ta c A = 6, B = 3, C = 6. B2 AC = 27 < 0, A = 6 > 0, vy M2 l im t cc tiu ca hm s, v fCT = f (1, 1) = 2019. V d 2. Tm cc tr ca hm s f (x, y ) = x2 + 4y 2 2 ln( xy ) Gii: > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 38 / 42 ## Cc tr ca hm s nhiu bin s 1.4.2. Cc tr c rng buc Bi ton: Tm cc tr ca hm s f (x, y ) trong x, y tha mn iu kin: (x, y ) = 0. Phng php tha s Lagrange - Lp hm b tr F (x, y , ) = f (x, y ) + (x, y ) trong l mt hng s s xc nh sau. - Xt h F > x (x, y , ) = 0 F > y (x, y , ) = 0 F > = (x, y ) = 0. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 39 / 42 ## Cc tr ca hm s nhiu bin s 1.4.2. Cc tr c rng buc Bi ton: Tm cc tr ca hm s f (x, y ) trong x, y tha mn iu kin: (x, y ) = 0. Phng php tha s Lagrange - Lp hm b tr F (x, y , ) = f (x, y ) + (x, y ) trong l mt hng s s xc nh sau. - Xt h F > x (x, y , ) = 0 F > y (x, y , ) = 0 F > = (x, y ) = 0. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 39 / 42 ## Cc tr ca hm s nhiu bin s 1.4.2. Cc tr c rng buc Bi ton: Tm cc tr ca hm s f (x, y ) trong x, y tha mn iu kin: (x, y ) = 0. Phng php tha s Lagrange - Lp hm b tr F (x, y , ) = f (x, y ) + (x, y ) trong l mt hng s s xc nh sau. - Xt h F > x (x, y , ) = 0 F > y (x, y , ) = 0 F > = (x, y ) = 0. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 39 / 42 ## Cc tr ca hm s nhiu bin Gi s h c nghim M0(x0, y0), ng vi 0, ta xt d2F (M0) = F xx (M0)dx 2 + 2F xy (M0)dxdy + F yy (M0)dy 2 Khi : - Nu d2F (M0) > 0 th M0 l im t cc tiu ca f (x, y ).- Nu d2F (M0) < 0 th M0 l im t cc i ca f (x, y ).- Nu d2F (M0) = 0 th ta phi dng phng php khc. V d. Tm cc tr ca hm s z = x + 2y vi iu kin x2 + y 2 = 5. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 40 / 42 ## Cc tr ca hm s nhiu bin Gi s h c nghim M0(x0, y0), ng vi 0, ta xt d2F (M0) = F xx (M0)dx 2 + 2F xy (M0)dxdy + F yy (M0)dy 2 Khi : - Nu d2F (M0) > 0 th M0 l im t cc tiu ca f (x, y ).- Nu d2F (M0) < 0 th M0 l im t cc i ca f (x, y ).- Nu d2F (M0) = 0 th ta phi dng phng php khc. V d. Tm cc tr ca hm s z = x + 2y vi iu kin x2 + y 2 = 5. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 40 / 42 ## Cc tr ca hm s nhiu bin Gi s h c nghim M0(x0, y0), ng vi 0, ta xt d2F (M0) = F xx (M0)dx 2 + 2F xy (M0)dxdy + F yy (M0)dy 2 Khi : - Nu d2F (M0) > 0 th M0 l im t cc tiu ca f (x, y ).- Nu d2F (M0) < 0 th M0 l im t cc i ca f (x, y ).- Nu d2F (M0) = 0 th ta phi dng phng php khc. V d. Tm cc tr ca hm s z = x + 2y vi iu kin x2 + y 2 = 5. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 40 / 42 ## Cc tr ca hm s nhiu bin Gi s h c nghim M0(x0, y0), ng vi 0, ta xt d2F (M0) = F xx (M0)dx 2 + 2F xy (M0)dxdy + F yy (M0)dy 2 Khi : - Nu d2F (M0) > 0 th M0 l im t cc tiu ca f (x, y ).- Nu d2F (M0) < 0 th M0 l im t cc i ca f (x, y ).- Nu d2F (M0) = 0 th ta phi dng phng php khc. V d. Tm cc tr ca hm s z = x + 2y vi iu kin x2 + y 2 = 5. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 40 / 42 ## Cc tr ca hm s nhiu bin Gi s h c nghim M0(x0, y0), ng vi 0, ta xt d2F (M0) = F xx (M0)dx 2 + 2F xy (M0)dxdy + F yy (M0)dy 2 Khi : - Nu d2F (M0) > 0 th M0 l im t cc tiu ca f (x, y ).- Nu d2F (M0) < 0 th M0 l im t cc i ca f (x, y ).- Nu d2F (M0) = 0 th ta phi dng phng php khc. V d. Tm cc tr ca hm s z = x + 2y vi iu kin x2 + y 2 = 5. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 40 / 42 ## Cc tr ca hm nhiu bin s Gii: Xt hm s F (x, y , ) = x + 2y + (x2 + y 2 5). F x = 1 + 2x, F y = 2 + 2y , F xx = 2, F xy = 0, F yy = 2. F x (x, y , ) = 0 F y (x, y , ) = 0 F = 0 1 + 2x = 02 + 2y = 0 x2 + y 2 = 5. Gii h trn ta c 2 im dng: M1(1, 2) (ng vi = 12 ), v M2(1, 2) (ng vi = 12 ). > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 41 / 42 ## Cc tr ca hm s nhiu bin s Ta thy d2F = 2(dx 2 + dy 2). - Ti M1, d2F (M1) = ( dx 2 + dy 2) > 0, vy M1 l im t cc tiu v zCT = z(1, 2) = 5. - Ti M2, d2F (M2) = (dx 2 + dy 2) < 0, vy M2 l im t cc i v zC = z(1, 2) = 5. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 42 / 42 ## Cc tr ca hm s nhiu bin s Ta thy d2F = 2(dx 2 + dy 2). - Ti M1, d2F (M1) = ( dx 2 + dy 2) > 0, vy M1 l im t cc tiu v zCT = z(1, 2) = 5. - Ti M2, d2F (M2) = (dx 2 + dy 2) < 0, vy M2 l im t cc i v zC = z(1, 2) = 5. > Gii tch 2 cho khi k thut Ngy 21 thng 3 nm 2022 42 / 42 ## Cc tr ca hm s nhiu bin s Ta thy d2F = 2(dx 2 + dy 2). - Ti M1, d2F (M1) = ( dx 2 + dy 2) > 0, vy M1 l im t cc tiu v zCT = z(1, 2) = 5. - Ti M2, d2F (M2) = (dx 2 + dy 2) < 0, vy M2 l im t cc i v zC = z(1, 2) = 5.