Jul 29, 2024
M
is placed on a rough surface with coefficient of friction ╬╝
.F
at an angle ╬╕
from the horizontal.Horizontal Forces
F cos ╬╕
Vertical Forces
mg
N
F sin ╬╕
In the vertical direction:
N + F sin ╬╕ = mg
N = mg - F sin ╬╕
In the horizontal direction:
F cos ╬╕ - f_s = ma
f_s
is the static friction force.f_s(max) = ╬╝N
F
to just move the block:
F cos ╬╕ = f_s(max)
F cos ╬╕ = ╬╝N
Substitute N
from vertical equation into the friction equation:
F cos ╬╕ = ╬╝(mg - F sin ╬╕)
F cos ╬╕ + ╬╝F sin ╬╕ = ╬╝mg
Therefore,
F = (╬╝mg) / (cos ╬╕ + ╬╝sin ╬╕)
F
, differentiate the function with respect to ╬╕
and set the derivative to zero:
tan ╬╕ = ╬╝
╬╕ = tanтБ╗┬╣(╬╝)
.tanтБ╗┬╣(╬╝)
F тЙИ (╬╝mg) / sqrt(1 + ╬╝┬▓)
M = 10 kg
╬╝ = 0.75
╬╕ = tanтБ╗┬╣(0.75)
F тЙИ (╬╝mg) / sqrt(1 + ╬╝┬▓)
M = 10 kg
, g = 9.8 m/s┬▓