Jul 29, 2024
M is placed on a rough surface with coefficient of friction ╬╝.F at an angle ╬╕ from the horizontal.Horizontal Forces
F cos ╬╕Vertical Forces
mgNF sin ╬╕In the vertical direction:
N + F sin ╬╕ = mgN = mg - F sin ╬╕In the horizontal direction:
F cos ╬╕ - f_s = maf_s is the static friction force.f_s(max) = ╬╝NF to just move the block:
F cos ╬╕ = f_s(max)F cos ╬╕ = ╬╝NSubstitute N from vertical equation into the friction equation:
F cos ╬╕ = ╬╝(mg - F sin ╬╕)F cos ╬╕ + ╬╝F sin ╬╕ = ╬╝mgTherefore,
F = (╬╝mg) / (cos ╬╕ + ╬╝sin ╬╕)F, differentiate the function with respect to ╬╕ and set the derivative to zero:
tan ╬╕ = ╬╝╬╕ = tanтБ╗┬╣(╬╝).tanтБ╗┬╣(╬╝)F тЙИ (╬╝mg) / sqrt(1 + ╬╝┬▓)M = 10 kg╬╝ = 0.75╬╕ = tanтБ╗┬╣(0.75)F тЙИ (╬╝mg) / sqrt(1 + ╬╝┬▓)M = 10 kg, g = 9.8 m/s┬▓