Transcript for:
Ringkasan Materi Persamaan dan Pertidaksamaan

[Musik] Hai semuanya kembali lagi di channel portal edukasi Pada kesempatan kali ini kita akan membahas rangkuman materi matematika kelas 8 bab 3 yaitu tentang persamaan dan pertidaksamaan linear satu variabel materi ini sudah kurikulum Merdeka ya kita mulai dengan menentukan kalimat terbuka dan tertutup kalimat terbuka adalah pernyataan yang nilainya belum tentu kepastiannya misalkan 3 dikurangi P = 2 nah ini belum tentu kita nggak tahu nilai P itu berapa kemudian kota S terletak di provinsi Jawa Barat ini juga nggak jelas nih kota s itu Kota apaan Kalau kalimat tertutup itu adalah pernyataan yang nilainya sudah pasti contohnya hari kemerdekaan Indonesia itu jatuh pada tanggal 17 Agustus kemudian 2 + 2 = 4 selanjutnya kita bahas ke bentuk umum persamaan linear satu variabel namanya juga persamaan linear satu variabel berarti ya hanya boleh ada satu variabel masih ingat variabel ingat variabel itu yang huruf-huruf itu loh contohnya 2A + 3 variabelnya berarti a 3C - 5 variabelnya berarti C 5 e - 7 = 4E variabelnya berarti e pokoknya dalam persamaan linear satu variabel hurufnya itu cuman boleh ada satu jenis enggak boleh ada lebih dari satu jenis selanjutnya menyelesaikan persamaan linear satu variabel kalau ada soal persamaan linear satu variabel itu super duper gampang kita tinggal mencari nilai variabel tersebut aja kok dengan sistem aljabar juga pasti beres dikerjainnya Nah kita cobain langsung aja ke contoh soalnya ya Nah misalkan ada contoh soal pertama nih tentukan nilai a dari persamaan a + 5 = 4 ini gampang kita tulis lagi dulu soalnya nih ditambah 5 sama dengan 4 kita hanya perlu meninggalkan di sebelah kiri Ini nih ruas kiri Ini Aa aja jadinya tuh kita terus a sama dengan nah 5 ini harus pindah ke kanan tapi nggak boleh nyerobot angka yang udah di kanan jadi kita tulis dulu yang 4 4 nah positif 5 ini kita harus pindahkan ke kanan Jadinya kalau kita pindah ruas dari kiri ke kanan ataupun kanan ke kiri ingat tandanya harus jadi kebalikannya dari positif menjadi negatif negatif 5 jadinya A = 4 - 5 -1 sudah beres gitu aja lanjut contoh soal kedua tentukan nilai a dari persamaan 6 = a - 3 dan juga sama kita tulis dulu soalnya nih 6 = a - 3 sekarang hanya sebelah kanan ya jangan bingung kita tulis lagi ada yang sebelah kirinya apa dulu nih 6 kita tulis Karena di sebelah kanan cuman boleh sisain a berarti negatif 3 harus pindah ruas ke kiri jadinya dari negatif menjadi positif positif 3 = a 6 + 3 9 = a ya udah beres nilai a itu adalah 9 contoh soal ketiga nih Tentukan nilai x dari persamaan 2x - 8 = 16 kita tulis dulu soalnya Ya 2x - 8 = 16 Nah di sini harus nyisain yang X aja kita bawa aja dulu duanya jadinya 2x = 16 ini pindahin ke kanan dari negatif menjadi positif positif 8 2x = 16 + 8 24 Apakah sudah beres belum Ini masih 2x yang kita cari nilai x aja X = ingat 2x itu dari 2 dikali X kalau tadi negatif pindah ke sini Jadi positif Maka kalau kali pindah ke sini jadinya ya Bagi jadinya 24 dibagi dua maka nilai x = 12 udah beres gampang kan sekarang kita masuk ke materi pertidaksamaan linear satu variabel Nah kalau ini namanya juga pertidaksamaan maka tidak sama dengan Nah berarti kalian akan menemukan simbol-simbol di bawah ini ada kurang dari lebih dari kurang dari sama dengan lebih dari sama dengan nah cara mengerjakannya itu sama kayak persamaan linear cuman hasilnya itu nggak cuma satu nah biar lebih paham kita langsung ke contoh soal ya Nah misalkan ada satu soal nih Tentukan nilai x dari pertidaksamaan x + 3 lebih dari 16 kita tulis soalnya dulu ya x ditambah 3 lebih dari 16 nah ini sama aja kita hanya menyisakan X1 ini x lebih dari 16 kita tulis dulu positif 3 pindah ke sana jadinya negatif 3 x lebih dari 16 kurangi 3 13 Nah maka hp-nya yang lebih dari 13 yaitu 14 15 16 dan seterusnya hingga tidak terbatas Nah HP itu adalah singkatan dari himpunan penyelesaian contoh soal kedua Tentukan nilai x dari pertidaksamaan x dikurangi 4 kurang dari 2 caranya sama kita tulis dulu soalnya x - 4 kurang dari 2 di sini kita menyisakan X saja x kurang dari 2 di sini kita tulis negatif 4 pindah ke sana jadinya positif 4 maka x kurang dari 6 nah hp-nya maka akan menjadi yang kurang dari 6 5 4 3 dan seterusnya beres soal terakhir nih Tentukan nilai x dari pertidaksamaan -2x + 5 kurang dari 7 pertama kita tulis soalnya -2x + 5 kurang dari 7 Nah di sini sama seperti persamaan linear kita harus nyisain dulu -2x - 2x kurang dari 7 nya kita tulis positif 5 pindah ke sana jadinya negatif 5 Min 2x kurang dari 7 kurangi 52 Nah di sini kan masih -2x kita harus mencari nilai x kita tulis X nah ketika di sini yang angka di sininya yang mendekati variabelnya itu adalah negatif maka tanda di sini itu harus berubah menjadi kebalikannya dari kurang dari menjadi lebih dari ingat ketika di sini si x nya bernilai negatif maka tandanya ketika menyelesaikan nyari x nya itu harus menjadi kebalikannya jadinya X lebih dari 2 -2 itu kan dikali x kali pindah menjadi bagi bagi maka X lebih dari 2 dibagi negatif 2 positif dibagi negatif hasilnya adalah negatif 2 dibagi 2 adalah 1 maka himpunan penyelesaiannya adalah X yang lebih dari -1 maka itu mulai dari 0 1 2 dan seterusnya beres deh gampang kan ingat ya pokoknya ketika Si x nya bernilai negatif tandanya ketika mencari x nya itu harus jadi kebalikannya Nah ya mungkin Cukup sekian terima kasih telah menyimak video pembelajaran hingga selesai semoga bermanfaat kita semua jangan lupa like Comment and subscribe