ЁЯУЪ

Engineering Mathematics II Revision Notes

Aug 3, 2024

Engineering Mathematics II - Lecture Notes

Introduction

  • рдореБрдЭрд╕реЗ рдирд╛рдо рдЧреБрд▓рд╢рди рдХреБрдорд╛рд░ рд╣реИ рдФрд░ рдЖрдЬ рд╣рдо рдЗрдВрдЬреАрдирд┐рдпрд░рд┐рдВрдЧ рдореИрдердореЗрдЯрд┐рдХреНрд╕ II рдХрд╛ рдПрдХ рд╢реЙрд░реНрдЯ рд░рд┐рд╡реАрдЬрди рдХрд░реЗрдВрдЧреЗред
  • рдкрд╣рд▓реЗ рдпреВрдирд┐рдЯреНрд╕: рдпреВрдирд┐рдЯ рдирдВрдмрд░ 1, 2, 4, 5 рдХреЛ рдкреВрд░рд╛ рдХрд░ рдЪреБрдХреЗ рд╣реИрдВред
  • рдЖрдЬ рдХрд╛ рд╡рд┐рд╖рдп: рдпреВрдирд┐рдЯ рдирдВрдмрд░ 3 рдХрд╛ рд░рд┐рд╡рд┐рдЬрдиред

Topics in Unit 3

  1. Definition of Sequence:
    • Definition of sequences and series with examples.
  2. Convergence of Series:
    • Tests for convergence of series.

Important Topics for Revision

  • Ratio Test (7 Marks Question):
    • рдПрдХ рдмрд╣реБрдд рдорд╣рддреНрд╡рдкреВрд░реНрдг рдЯреЗрд╕реНрдЯ рд╣реИ рдЬреЛ рдЕрдХрдбреВ рдХреЗ рдПрдЧреНрдЬрд╛рдо рдореЗрдВ рд░реЗрдЧреБрд▓рд░рд▓реА рдкреВрдЫрд╛ рдЬрд╛рддрд╛ рд╣реИред
  • Remaining topics contributing to 22 marks questions.

Key Topics for Today's Revision

  • 4-Year Series
  • Half Range
  • Sine and Cosine Series
  • Important concepts related to the above topics.

Fourier Series

  • Definition:
    • Fourier Series is defined for periodic functions.
  • Periodic Function:
    • A periodic function repeats its value after a fixed interval (e.g., sine and cosine functions).

Important Formulas

  • Trigonometric Identities:
    • Simple identities that need to be memorized.
  • Properties of Definite Integral:
    • Important for calculating integrals, particularly in Fourier series.

Integration by Parts

  • Importance:
    • Integral calculation is crucial in Mathematics II; it appears in every unit.
  • Formula:
    • Integration by parts is used to simplify complex integrals.
    • It is essential to understand and apply correctly for success in exam questions.

Odd and Even Functions

  • Even Function:
    • f(-x) = f(x), graph is symmetric about the y-axis.
  • Odd Function:
    • f(-x) = -f(x), graph is symmetric about the origin.
  • Properties:
    • The graph of even functions will integrate to twice the area from 0 to a positive limit.
    • The graph of odd functions will integrate to zero over symmetric limits.

Practical Application - Example Problems

  1. Find the Fourier Series:
    • Example: Given function f(x) and its interval; apply the defined formulas to find the series.

Conclusion

  • Review important definitions, tests, integration techniques, and properties.
  • Practice problems related to Fourier series to solidify understanding.
  • Ensure to understand the relationship between periodic functions and their Fourier expansions.

Study Tips

  • Memorize key formulas and definitions.
  • Solve previous years' exam questions on Fourier series and integration.
  • Practice drawing graphs for odd and even functions.