Coconote
AI notes
AI voice & video notes
Try for free
ЁЯУЪ
Engineering Mathematics II Revision Notes
Aug 3, 2024
Engineering Mathematics II - Lecture Notes
Introduction
рдореБрдЭрд╕реЗ рдирд╛рдо рдЧреБрд▓рд╢рди рдХреБрдорд╛рд░ рд╣реИ рдФрд░ рдЖрдЬ рд╣рдо рдЗрдВрдЬреАрдирд┐рдпрд░рд┐рдВрдЧ рдореИрдердореЗрдЯрд┐рдХреНрд╕ II рдХрд╛ рдПрдХ рд╢реЙрд░реНрдЯ рд░рд┐рд╡реАрдЬрди рдХрд░реЗрдВрдЧреЗред
рдкрд╣рд▓реЗ рдпреВрдирд┐рдЯреНрд╕: рдпреВрдирд┐рдЯ рдирдВрдмрд░ 1, 2, 4, 5 рдХреЛ рдкреВрд░рд╛ рдХрд░ рдЪреБрдХреЗ рд╣реИрдВред
рдЖрдЬ рдХрд╛ рд╡рд┐рд╖рдп: рдпреВрдирд┐рдЯ рдирдВрдмрд░ 3 рдХрд╛ рд░рд┐рд╡рд┐рдЬрдиред
Topics in Unit 3
Definition of Sequence:
Definition of sequences and series with examples.
Convergence of Series:
Tests for convergence of series.
Important Topics for Revision
Ratio Test (7 Marks Question):
рдПрдХ рдмрд╣реБрдд рдорд╣рддреНрд╡рдкреВрд░реНрдг рдЯреЗрд╕реНрдЯ рд╣реИ рдЬреЛ рдЕрдХрдбреВ рдХреЗ рдПрдЧреНрдЬрд╛рдо рдореЗрдВ рд░реЗрдЧреБрд▓рд░рд▓реА рдкреВрдЫрд╛ рдЬрд╛рддрд╛ рд╣реИред
Remaining topics contributing to 22 marks questions.
Key Topics for Today's Revision
4-Year Series
Half Range
Sine and Cosine Series
Important concepts related to the above topics.
Fourier Series
Definition:
Fourier Series is defined for periodic functions.
Periodic Function:
A periodic function repeats its value after a fixed interval (e.g., sine and cosine functions).
Important Formulas
Trigonometric Identities:
Simple identities that need to be memorized.
Properties of Definite Integral:
Important for calculating integrals, particularly in Fourier series.
Integration by Parts
Importance:
Integral calculation is crucial in Mathematics II; it appears in every unit.
Formula:
Integration by parts is used to simplify complex integrals.
It is essential to understand and apply correctly for success in exam questions.
Odd and Even Functions
Even Function:
f(-x) = f(x), graph is symmetric about the y-axis.
Odd Function:
f(-x) = -f(x), graph is symmetric about the origin.
Properties:
The graph of even functions will integrate to twice the area from 0 to a positive limit.
The graph of odd functions will integrate to zero over symmetric limits.
Practical Application - Example Problems
Find the Fourier Series:
Example: Given function f(x) and its interval; apply the defined formulas to find the series.
Conclusion
Review important definitions, tests, integration techniques, and properties.
Practice problems related to Fourier series to solidify understanding.
Ensure to understand the relationship between periodic functions and their Fourier expansions.
Study Tips
Memorize key formulas and definitions.
Solve previous years' exam questions on Fourier series and integration.
Practice drawing graphs for odd and even functions.
ЁЯУД
Full transcript