ЁЯУР

Inverse Trigonometric Functions Overview

Jul 14, 2024

Inverse Trigonometry Revision

Important Points in 10 Minutes

Key Definitions

Trigonometric Functions

  • Input: Angles (which we observe)
  • Output: Numerical Value
  • Domain: Values of input angles (x)
  • Range: Output numerical values (y)

Inverse Trigonometric Functions

  • Input: Numerical Value
  • Output: Angle
  • Example:
    • Sine Inverse
    • Cosine Inverse
    • Tangent Inverse

Key Conditions

  • The domain's one value of x cannot have two values in the range
  • One numerical value can't correspond to two angles
  • The range of sine inverse has to be restricted

Important Ranges and Domains

  • Range of Sine Inverse:
      • ╧А/2 to ╧А/2 (Principal Value Branch)
  • Principal Range of Cosine Inverse, Secant Inverse, Cosecant Inverse:
    • 0 to ╧А
  • Principal Range of Sine Inverse, Tangent Inverse, Cotangent Inverse:
    • -╧А/2 to ╧А/2

Principal Value Branch:

  • The smallest range of angles where no conflict occurs.
  • Example: The principal value of sine inverse (0.5) will be ╧А/6.

Important Formulas and Families

    • Tangent Inverse (x/y) =
      • Tangent Inverse x + Tangent Inverse y if x * y < 1
    • Sine Inverse (1/x) = Cosine Inverse (sqrt(x^2 - 1))
      • Condition: |x| > 1*

Question Solving Strategies

  • Remember important conditions
  • Use the correct principal value and principal branch
  • Utilize correct formulae and families

Important Transformations

  • For Cosine Inverse, Secant Inverse, and Cosecant Inverse, the minus sign cannot directly come out

Additional Important Formulas

    • Sine Inverse x + Cosine Inverse x = ╧А/2
    • Tangent Inverse x + Cotangent Inverse x (and for other such combined formulas):
      • The sine (inside value should equal the final value)

Conclusion

  • Remember these important points
  • Be able to solve all difficult questions
  • Happy Learning!