ЁЯУК

Statistics Formula Marathon Notes

Jul 30, 2024

CA Foundation June 2024 - Statistics Formula Marathon Lecture

Introduction

  • Session Title: Formula Marathon of Statistics
  • CA Foundation Paper 3: Quantitative Techniques (Statistics)
  • Goal: Review all formulas from the Statistics portion
  • Notes: Available in the provided PDF link in the description
  • Phases:
    • Phase 1: Chapters 1-6 (61 Marks) revision completed
    • Phase 2: Formula Marathon of Mathematics completed
    • Current Session: Formula Marathon of Statistics
  • Session Format:
    • Review concepts interactively
    • Notes and formulas to be filled in during the session
    • Approximately 97 formulas to revise

Key Points Covered

Introduction and Basics

  • Class Boundaries:
    • Exclusive Classification: No effort needed, UCB = UCL, LCB = LCL
    • Inclusive Classification: Adjustments required (UCB: +0.5, LCB: -0.5)
  • Midpoint (Class Mark):
    • Simplified as (LCB + UCB) / 2
  • Class Length (Width):
    • Formula: UCB - LCB
  • Frequency Density:
    • Formula: Class Frequency / Class Length
  • Relative Frequency and Percentage Frequency:
    • Relative Frequency: Class Frequency / Total Frequency
    • Percentage Frequency: (Class Frequency / Total Frequency)

Central Tendency Formulas

  • Arithmetic Mean (Discrete Data):
    • Formula: ╬гx / n
  • Arithmetic Mean (Grouped Data):
    • Formula: ╬г(fx) / n
  • Combined Mean:
    • Formula: (n1x╠Д1 + n2x╠Д2) / (n1 + n2)
  • Arithmetic Mean (Assumed Mean or Step-Deviation Method):
    • Formula: A + (╬г(fd) / n) ├Ч C
  • Median (Discrete Data):
    • Sort data in ascending order, apply
      • Odd n: Middle term
      • Even n: Average of two middle terms
  • Median (Grouped Data):
    • Formula: L1 + ((n/2) - F) / f) ├Ч C
  • Partition Values General Formula (Quartiles, Deciles, Percentiles):
    • Formula: (n+1) ├Ч p/100 (for Percentiles)
  • Mode (Discrete Data):
    • Most frequent observation
  • Mode (Grouped Frequency Distribution):
    • Formula: L1 + ((f0 - f-1) / (2f0 - f-1 - f1) ├Ч C)
  • Relationship Between Mean, Median, and Mode:
    • Symmetrical Data: Mean = Median = Mode
  • Geometric Mean (Discrete Positive Observations):
    • Formula: (x1 ├Ч x2 ├Ч ... ├Ч xn)^(1/n)
  • Geometric Mean (Frequency Distribution):
    • Formula: (x1^f1 ├Ч x2^f2 ├Ч ... ├Ч xn^fn)^(1/N)
  • Harmonic Mean (Discrete Data):
    • Formula: n / ╬г(1/x)
  • Harmonic Mean (Frequency Distribution):
    • Formula: N / ╬г(f / x)
  • Combined Harmonic Mean:
    • Formula: (n1 + n2) / ((n1 / H1) + (n2 / H2))
  • Relation Between AM, GM, and HM:
    • If observations are identical: AM = GM = HM
    • If observations are distinct: AM > GM > HM

Dispersion Formulas

  • Range:
    • Formula (Discrete): L - S
    • Formula (Grouped): UCB (Last CI) - LCB (First CI)
  • Coefficient of Range:
    • Formula: (L - S) / (L + S) ├Ч 100
  • Mean Deviation:
    • About Mean: ╬г|x - x╠Д| / n
    • About Median/Mode: ╬г|x - Median| / n or ╬г|x - Mode| / n
  • Standard Deviation:
    • Formula (Discrete): тИЪ[╬г(x - x╠Д)^2 / n]
    • Shortcut Formula: тИЪ[╬г(x^2)/n - (x╠Д)^2]
  • Coefficient of Variation:
    • Formula: (╧Г / x╠Д) ├Ч 100
  • Variance:
    • Same as Standard Deviation without the square root
  • Relationship Between Measures of Dispersion (Approx):
    • AM / GM / HM
  • Change of Origin and Scale in Dispersion:
    • No effect on origin, but effect on scale

Probability Formulas

  • Basic Probability:
    • P(A) = (Number of Favorable Outcomes) / (Total Outcomes)
    • P(A') = 1 - P(A)
  • Compound Probability (Intersection):
    • P(A тИй B) = P(A) ├Ч P(B | A)
    • For Independent Events: P(A тИй B) = P(A) ├Ч P(B)
  • Conditional Probability:
    • P(B | A) = P(A тИй B) / P(A)
  • Bayes' Theorem:
    • P(A | B) = [P(B | A) ├Ч P(A)] / P(B)
  • Expected Value:
    • E(x) = ╬г[p(x) ├Ч x]
  • Variance of Probability Distribution:
    • Var(x) = E(x^2) - [E(x)]^2
  • Binomial Probability Function:
    • P(X=x) = nCx p^x (1-p)^(n-x)
  • Poisson Distribution:
    • P(X=x) = (e^-╬╗ ╬╗^x) / x!
  • Normal Distribution:
    • Probability Density Function and Z-Score Calculation
    • ╬╝ = 0 and ╧Г = 1 for standard normal distribution

Correlation and Regression Formulas

  • Karl Pearson's Correlation Coefficient:
    • r = Cov(X, Y) / (╧ГX ╧ГY)
  • Spearman's Rank Correlation:
    • Formula: 1 - [(6 ╬гD^2) / (n (n^2 - 1))]
  • Regression Coefficients:
    • bxy = Cov(X, Y) / Var(X)
    • byx = Cov(X, Y) / Var(Y)
  • Combined Regression Coefficient:
    • r^2 = bxy ├Ч byx
  • Regression Line Intersection:
    • Mean of X and Y
  • Coefficient of Determination:
    • r^2
  • Coefficient of Non-Determination:
    • 1 - r^2

Index Numbers Formulas

  • Price, Quantity, and Value Relatives:
    • Price Relative: PтВБ / PтВА
    • Quantity Relative: QтВБ / QтВА
    • Value Relative: VтВБ / VтВА
  • Laspeyres Index:
    • ╬г(PтВБ QтВА) / ╬г(PтВА QтВА) ├Ч 100
  • Paasche's Index:
    • ╬г(PтВБ QтВБ) / ╬г(PтВА QтВБ) ├Ч 100
  • Fisher's Ideal Index:
    • тИЪ(Laspeyres' Index ├Ч Paasche's Index)
  • Marshall-Edgeworth Index:
    • ╬г(PтВБ(QтВА + QтВБ)) / ╬г(PтВА(QтВА + QтВБ)) ├Ч 100

Session Conclusion

  • Upcoming Sessions:
    • 25th May: One-shot revision of Sequence and Series (Chapter 6)
  • Playlist: Contains all live and recorded session links

iem>Note</em>: View the detailed sessions in the given playlist for better conceptual understanding.