ЁЯУП

Introduction to Coordinate Systems

Oct 1, 2024

Lecture: Coordinate Systems

Introduction

  • Subject: Coordinate Systems in Mechanics
  • Objective: To understand the position, velocity, and acceleration of an object
  • Utility: BSc Non-medical, Computer Science, Physics Honors

Definition of Coordinate Systems

  • Reference Frame: Used to find the position, velocity, and other motion parameters of an object.
  • Origin: A predetermined point
  • Axes: X, Y, Z

Types of Coordinate Systems

  1. Cartesian Coordinate System
    • X, Y, Z axes
    • Unit Vectors: i╠В, j╠В, k╠В
    • Use: Determining positions within a box
  2. Spherical Polar Coordinate System
    • Use: Spherically symmetric objects
    • Coordinates: r, ╬╕, ╧Ж
  3. Cylindrical Coordinate System
    • Coordinates: ╧Б, ╬╕, z
    • Use: For cylinders

Vector Calculation in Cartesian System

  • Position Vector: r = xi╠В + yj╠В + zk╠В
  • Velocity Vector: v = dx/dt i╠В + dy/dt j╠В + dz/dt k╠В
  • Acceleration Vector: a = d┬▓x/dt┬▓ i╠В + d┬▓y/dt┬▓ j╠В + d┬▓z/dt┬▓ k╠В
  • Magnitude of Vector:
    • Velocity: |v| = тИЪ(vx┬▓ + vy┬▓ + vz┬▓)
    • Acceleration: |a| = тИЪ(ax┬▓ + ay┬▓ + az┬▓)

Plane Polar Coordinate System

  • Use: To find the position of an object in a plane
  • Coordinates: r (radius), ╬╕ (angle)
  • Conversion from Cartesian to Plane Polar:
    • x = r cos ╬╕
    • y = r sin ╬╕
    • r = тИЪ(x┬▓ + y┬▓)
    • ╬╕ = tanтБ╗┬╣(y/x)

Unit Vectors

  • r╠В (Radially Outward): Unit vector in the radial direction
  • ╬╕╠В (Angular Direction): Unit vector in the angular direction

Conclusion

  • Importance of Coordinate Systems: To measure and analyze the position and motion of objects
  • In the next lecture, we will understand unit vectors in detail.

Note: These notes are prepared based on the examples and explanations given in the lecture.