Jun 1, 2024
John Napier: Introduced the concept of logarithms.
Key Idea: Every positive real number (N) can be expressed in exponential form as:
N = a^L
where:
Logarithm as Power Representation:
L = log_a(N)
N = a^L
Change of Base Formula:
log_a(N) = \frac{log_{\alpha}(N)}{log_{\alpha}(a)}
Special Base Properties:
log_{10}(x)log_e(x) or LN(x), where 'e' is Napier's constant (~2.718).Logarithmic Identities:
Product rule:
log_a(N_1 imes N_2) = log_a(N_1) + log_a(N_2)
Quotient rule:
log_a\left(\frac{N_1}{N_2}\right) = log_a(N_1) - log_a(N_2)
Power rule (when n is odd or even):
log_a(N^n) = n \times log_a(|N|)
(Use modulus |N| when n is even)
Logarithmic and Exponential Relationship:
a^{log_a(N)} = N
Reciprocal Property:
log_a\left(\frac{1}{N}\right) = -log_a(N)
Logarithm of the Base Itself:
log_a(a) = 1
Logarithm of One:
log_a(1) = 0
Symmetry Property:
log_a\left(N^B\right) = B \times log_a(N)
For example,
log_a(N^2) = 2 \times log_a(N)
This property avoids common mistakes like assuming the entire logarithm to a power.
Given:
log_2(x) = 5
2^5 = xx = 32For more complex expressions with mixed logarithmic forms, use appropriate properties to simplify.
log_{10}(100), log_3(27), log_5(25) - log_5(5).